Afficher la notice abrégée

hal.structure.identifierVirtual Reality for Improved Innovative Immersive Interaction [VR4I]
dc.contributor.authorGEORGE, Laurent
hal.structure.identifierVisualization and manipulation of complex data on wireless mobile devices [IPARLA ]
dc.contributor.authorLOTTE, Fabien
hal.structure.identifierDepartamento de Ingeniería de Telecomunicación [Linares]
dc.contributor.authorVICIANA ABAD, Raquel
hal.structure.identifierVirtual Reality for Improved Innovative Immersive Interaction [VR4I]
dc.contributor.authorLÉCUYER, Anatole
dc.contributor.editorIEEE-EMBS
dc.date.accessioned2024-04-15T09:46:47Z
dc.date.available2024-04-15T09:46:47Z
dc.date.issued2011-08
dc.date.conference2011-08-30
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/198040
dc.description.abstractEnIn this paper we explore the use of electrical biosignals measured on scalp and corresponding to mental relaxation and concentration tasks in order to control an object in a video game. To evaluate the requirements of such a system in terms of sensors and signal processing we compare two designs. The first one uses only one scalp electroencephalographic (EEG) electrode and the power in the alpha frequency band. The second one uses sixteen scalp EEG electrodes and machine learning methods. The role of muscular activity is also evaluated using five electrodes positioned on the face and the neck. Results show that the first design enabled 70% of the participants to successfully control the game, whereas 100% of the participants managed to do it with the second design based on machine learning. Subjective questionnaires confirm these results: users globally felt to have control in both designs, with an increased feeling of control in the second one. Offline analysis of face and neck muscle activity shows that this activity could also be used to distinguish between relaxation and concentration tasks. Results suggest that the combination of muscular and brain activity could improve performance of this kind of system. They also suggest that muscular activity has probably been recorded by EEG electrodes.
dc.description.sponsorshipOpenViBE2 : adaptation automatique du contenu et de l'interaction avec les univers virtuels à partir de l'activité cérébrale de l'utilisateur - ANR-09-CORD-0017
dc.language.isoen
dc.title.enUsing Scalp Electrical Biosignals to Control an Object by Concentration and Relaxation Tasks: Design and Evaluation
dc.typeCommunication dans un congrès
dc.subject.halInformatique [cs]/Synthèse d'image et réalité virtuelle [cs.GR]
dc.subject.halInformatique [cs]/Traitement du signal et de l'image
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
dc.identifier.arxiv1111.5285
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleInternational Conference of the IEEE EMBS
bordeaux.countryUS
bordeaux.conference.cityBoston
bordeaux.peerReviewedoui
hal.identifierinria-00634549
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2011-09-03
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00634549v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2011-08&rft.au=GEORGE,%20Laurent&LOTTE,%20Fabien&VICIANA%20ABAD,%20Raquel&L%C3%89CUYER,%20Anatole&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée