Afficher la notice abrégée

hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorKOSOWSKI, Adrian
hal.structure.identifierAlgorithms, simulation, combinatorics and optimization for telecommunications [MASCOTTE]
dc.contributor.authorLI, Bi
hal.structure.identifierAlgorithms, simulation, combinatorics and optimization for telecommunications [MASCOTTE]
dc.contributor.authorNISSE, Nicolas
hal.structure.identifierFacultad de Ingeniería y Ciencias [Santiago]
dc.contributor.authorSUCHAN, Karol
dc.date.accessioned2024-04-15T09:45:45Z
dc.date.available2024-04-15T09:45:45Z
dc.date.issued2012-02
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/197947
dc.descriptionRAPPORT
dc.description.abstractEn{\it Cops and robber games} concern a team of cops that must capture a robber moving in a graph. We consider the class of $k$-chordal graphs, i.e., graphs with no induced cycle of length greater than $k$, $k\geq 3$. We prove that $k-1$ cops are always sufficient to capture a robber in $k$-chordal graphs. This leads us to our main result, a new structural decomposition for a graph class including $k$-chordal graphs. We present a quadratic algorithm that, given a graph $G$ and $k\geq 3$, either returns an induced cycle larger than $k$ in $G$, or computes a {\it tree-decomposition} of $G$, each {\it bag} of which contains a dominating path with at most $k-1$ vertices. This allows us to prove that any $k$-chordal graph with maximum degree $\Delta$ has treewidth at most $(k-1)(\Delta-1)+2$, improving the $O(\Delta (\Delta-1)^{k-3})$ bound of Bodlaender and Thilikos (1997). Moreover, any graph admitting such a tree-decomposition has hyperbolicity $\leq\lfloor \frac{3}{2}k\rfloor$. As an application, for any $n$-node graph admitting such a tree-decomposition, we propose a {\it compact routing scheme} using routing tables, addresses and headers of size $O(\log n)$ bits and achieving an additive stretch of $O(k\log \Delta)$. As far as we know, this is the first routing scheme with $O(\log n)$-routing tables and small additive stretch for $k$-chordal graphs.
dc.description.sponsorshipAlgorithmes de graphes parametres et exacts - ANR-09-BLAN-0159
dc.language.isoen
dc.subject.enTreewidth
dc.subject.enchordality
dc.subject.enhyperbolicity
dc.subject.encompact routing
dc.subject.encops and robber games
dc.title.enk-Chordal Graphs: from Cops and Robber to Compact Routing via Treewidth
dc.typeRapport
dc.subject.halInformatique [cs]/Algorithme et structure de données [cs.DS]
dc.subject.halInformatique [cs]/Mathématique discrète [cs.DM]
dc.description.sponsorshipEuropeExperimental UpdateLess Evolutive Routing
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.type.institutionINRIA
hal.identifierhal-00671861
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00671861v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2012-02&rft.au=KOSOWSKI,%20Adrian&LI,%20Bi&NISSE,%20Nicolas&SUCHAN,%20Karol&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée