Afficher la notice abrégée

hal.structure.identifierSchool of Computing [Leeds]
dc.contributor.authorSARMANY, Domokos
hal.structure.identifierSchool of Computing [Leeds]
dc.contributor.authorHUBBARD, Matthew
hal.structure.identifierParallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorRICCHIUTO, Mario
dc.date.accessioned2024-04-15T09:45:26Z
dc.date.available2024-04-15T09:45:26Z
dc.date.created2012
dc.date.issued2012
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/197920
dc.description.abstractEnThis article describes a discontinuous implementation of residual distribution for shallow-water flows. The emphasis is put on the space-time implementation of residual distribution for the time-dependent system of equations with discontinuity in time only. This lifts the time-step restriction that even implicit continuous residual distribution schemes invariably suffer from, and thus leads to an unconditionally stable discretisation. The distributions are the space-time variants of the upwind distributions for the steady-state system of equations and are designed to satisfy the most important properties of the original mathematical equations: positivity, linearity preservation, conservation and hydrostatic balance. The purpose of the several numerical examples presented in this article is twofold. First, to show that the discontinuous numerical discretisation does indeed exhibit all the desired properties when applied to the shallow-water equations. Second, to investigate how much the time step can be increased without adversely affecting the accuracy of the scheme and whether this translates into gains in computational efficiency. Comparison to other existing residual distribution schemes is also provided to demonstrate the improved performance of the scheme.
dc.language.isoen
dc.subject.enhyperbolic conservation laws
dc.subject.enshallow-water equations
dc.subject.enspace-time discontinuous representation
dc.subject.enresidual distribution
dc.title.enUnconditionally stable space-time discontinuous residual distribution for shallow-water flows
dc.typeRapport
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.type.institutionINRIA
bordeaux.type.reportrr
hal.identifierhal-00696083
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00696083v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2012&rft.au=SARMANY,%20Domokos&HUBBARD,%20Matthew&RICCHIUTO,%20Mario&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée