Show simple item record

hal.structure.identifierAlgorithms and high performance computing for grand challenge applications [SCALAPPLIX]
dc.contributor.authorFORTIN, Pierre
dc.date.accessioned2024-04-15T09:45:21Z
dc.date.available2024-04-15T09:45:21Z
dc.date.created2005-11
dc.date.issued2005-11
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/197911
dc.description.abstractEnIn the Fast Multipole Method, most of the far field computation is due to the multipole-to-local (M2L) operator. In this report we distinguish two different expressions for this operator: while the first one is natural and efficient, and thus commonly used, the second one, unlike the first, respects a sharp error bound, which is proven here. Two schemes, that reduce the operation count of the M2L operator, are detailed: the (block) Fast Fourier Transform and the rotations. We then present a matrix approach that uses BLAS (Basic Linear Algebra Subprograms) routines to speed up the $M2L$ computation. In order to use the more efficient level 3 BLAS (for matrix products), we require recopies, but this additional cost can be avoided thanks to special data storages. Finally all these schemes are compared, theorically and practically with uniform distributions, which validates our BLAS version.
dc.language.isoen
dc.subject.enFAST MULTIPOLE METHOD
dc.subject.enUNIFORM DISTRIBUTION
dc.subject.enERROR BOUND
dc.subject.enFAST FOURIER TRANSFORM
dc.subject.enROTATION
dc.subject.enBLAS
dc.title.enMultipole-to-local operator in the Fast Multipole Method: comparison of FFT, rotations and BLAS improvements
dc.typeRapport
dc.subject.halInformatique [cs]/Autre [cs.OH]
bordeaux.page65
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.type.institutionINRIA
hal.identifierinria-00070267
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00070267v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2005-11&rft.spage=65&rft.epage=65&rft.au=FORTIN,%20Pierre&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record