Show simple item record

hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorBEAUMONT, Olivier
hal.structure.identifierLaboratoire de l'Informatique du Parallélisme [LIP]
dc.contributor.authorMARCHAL, Loris
dc.date.accessioned2024-04-15T09:42:40Z
dc.date.available2024-04-15T09:42:40Z
dc.date.created2013-10-18
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/197697
dc.description.abstractEnThe tremendous increase in the size and heterogeneity of supercomputers makes it very difficult to predict the performance of a scheduling algorithm. Therefore, dynamic solutions, where scheduling decisions are made at runtime have overpassed static allocation strategies. The simplicity and efficiency of dynamic schedulers such as Hadoop are a key of the success of the MapReduce framework. Dynamic schedulers such as StarPU, PaRSEC or StarSs are also developed for more constrained computations, e.g. task graphs coming from linear algebra. To make their decisions, these runtime systems make use of some static information, such as the distance of tasks to the critical path or the affinity between tasks and computing resources (CPU, GPU,\ldots) and of dynamic information, such as where input data are actually located. In this paper, we concentrate on two elementary linear algebra kernels, namely the outer product and the matrix multiplication. For each problem, we propose several dynamic strategies that can be used at runtime and we provide an analytic study of their theoretical performance. We prove that the theoretical analysis provides very good estimate of the amount of communications induced by a dynamic strategy, thus enabling to choose among them for a given problem and architecture.
dc.description.sponsorshipSimulation de systèmes de prochaine génération - ANR-11-INFR-0013
dc.language.isoen
dc.subject.enDynamic scheduling
dc.subject.endata-aware algorithms
dc.subject.enrandomized algorithms
dc.subject.enperformance evaluation
dc.subject.enlinear algebra.
dc.subject.enlinear algebra
dc.title.enWhat Makes Affinity-Based Schedulers So Efficient ?
dc.typeDocument de travail - Pré-publication
dc.subject.halInformatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-00875487
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00875487v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BEAUMONT,%20Olivier&MARCHAL,%20Loris&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record