Afficher la notice abrégée

hal.structure.identifierDépartement d'Informatique et d'Ingénierie [DII]
dc.contributor.authorCZYZOWICZ, Jurek
hal.structure.identifierNetworks, Graphs and Algorithms [GANG]
hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
dc.contributor.authorKOSOWSKI, Adrian
hal.structure.identifierDépartement d'Informatique et d'Ingénierie [DII]
dc.contributor.authorPELC, Andrzej
dc.date.accessioned2024-04-15T09:42:39Z
dc.date.available2024-04-15T09:42:39Z
dc.date.issued2014-04
dc.identifier.issn0178-2770
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/197696
dc.description.abstractEnTwo identical (anonymous) mobile agents start from arbitrary nodes of an unknown tree and have to meet at some node. Agents move in synchronous rounds: in each round an agent can either stay at the current node or move to one of its neighbors. We consider deterministic algorithms for this rendezvous task. The main result of this paper is a tight trade-off between the optimal time of completing rendezvous and the size of memory of the agents. For agents with $k$ memory bits, we show that optimal rendezvous time is $\Theta(n+n^2/k)$ in $n$-node trees. More precisely, if $k \geq c\log n$, for some constant $c$, we design agents accomplishing rendezvous in arbitrary trees of size $n$ {(unknown to the agents)} in time $O(n+n^2/k)$, starting with arbitrary delay. We also show that no pair of agents can accomplish rendezvous in time $o(n+n^2/k)$, even in the class of lines of known length and even with simultaneous start. Finally, we prove that at least logarithmic memory is necessary for rendezvous, even for agents starting simultaneously in a $n$-node line.
dc.description.sponsorshipCalculabilité et complexité en distribué - ANR-11-BS02-0014
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enrendezvous
dc.subject.enanonymous agents
dc.subject.entime
dc.subject.enmemory space
dc.title.enTime versus space trade-offs for rendezvous in trees
dc.typeArticle de revue
dc.identifier.doi10.1007/s00446-013-0201-4
dc.subject.halInformatique [cs]/Algorithme et structure de données [cs.DS]
bordeaux.journalDistributed Computing
bordeaux.page95-109
bordeaux.volume27
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00646912
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00646912v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Distributed%20Computing&rft.date=2014-04&rft.volume=27&rft.issue=2&rft.spage=95-109&rft.epage=95-109&rft.eissn=0178-2770&rft.issn=0178-2770&rft.au=CZYZOWICZ,%20Jurek&KOSOWSKI,%20Adrian&PELC,%20Andrzej&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée