Time versus space trade-offs for rendezvous in trees
hal.structure.identifier | Département d'Informatique et d'Ingénierie [DII] | |
dc.contributor.author | CZYZOWICZ, Jurek | |
hal.structure.identifier | Networks, Graphs and Algorithms [GANG] | |
hal.structure.identifier | Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE] | |
dc.contributor.author | KOSOWSKI, Adrian | |
hal.structure.identifier | Département d'Informatique et d'Ingénierie [DII] | |
dc.contributor.author | PELC, Andrzej | |
dc.date.accessioned | 2024-04-15T09:42:39Z | |
dc.date.available | 2024-04-15T09:42:39Z | |
dc.date.issued | 2014-04 | |
dc.identifier.issn | 0178-2770 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/197696 | |
dc.description.abstractEn | Two identical (anonymous) mobile agents start from arbitrary nodes of an unknown tree and have to meet at some node. Agents move in synchronous rounds: in each round an agent can either stay at the current node or move to one of its neighbors. We consider deterministic algorithms for this rendezvous task. The main result of this paper is a tight trade-off between the optimal time of completing rendezvous and the size of memory of the agents. For agents with $k$ memory bits, we show that optimal rendezvous time is $\Theta(n+n^2/k)$ in $n$-node trees. More precisely, if $k \geq c\log n$, for some constant $c$, we design agents accomplishing rendezvous in arbitrary trees of size $n$ {(unknown to the agents)} in time $O(n+n^2/k)$, starting with arbitrary delay. We also show that no pair of agents can accomplish rendezvous in time $o(n+n^2/k)$, even in the class of lines of known length and even with simultaneous start. Finally, we prove that at least logarithmic memory is necessary for rendezvous, even for agents starting simultaneously in a $n$-node line. | |
dc.description.sponsorship | Calculabilité et complexité en distribué - ANR-11-BS02-0014 | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.subject.en | rendezvous | |
dc.subject.en | anonymous agents | |
dc.subject.en | time | |
dc.subject.en | memory space | |
dc.title.en | Time versus space trade-offs for rendezvous in trees | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/s00446-013-0201-4 | |
dc.subject.hal | Informatique [cs]/Algorithme et structure de données [cs.DS] | |
bordeaux.journal | Distributed Computing | |
bordeaux.page | 95-109 | |
bordeaux.volume | 27 | |
bordeaux.hal.laboratories | Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 | * |
bordeaux.issue | 2 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00646912 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00646912v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Distributed%20Computing&rft.date=2014-04&rft.volume=27&rft.issue=2&rft.spage=95-109&rft.epage=95-109&rft.eissn=0178-2770&rft.issn=0178-2770&rft.au=CZYZOWICZ,%20Jurek&KOSOWSKI,%20Adrian&PELC,%20Andrzej&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |