Afficher la notice abrégée

hal.structure.identifierCentre d'études scientifiques et techniques d'Aquitaine (CESTA-CEA) [CESTA]
dc.contributor.authorMAIRE, P.H.
hal.structure.identifierParallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
dc.contributor.authorABGRALL, Remi
hal.structure.identifierCentre d'Etudes Lasers Intenses et Applications [CELIA]
dc.contributor.authorBREIL, Jérôme
hal.structure.identifierInstitut de Mathématiques de Toulouse UMR5219 [IMT]
dc.contributor.authorLOUBÈRE, Raphaël
hal.structure.identifierDAM Île-de-France [DAM/DIF]
dc.contributor.authorREBOURCET, Bernard
dc.date.accessioned2024-04-15T09:41:54Z
dc.date.available2024-04-15T09:41:54Z
dc.date.created2012-05-03
dc.date.issued2013-02-15
dc.identifier.issn0021-9991
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/197640
dc.description.abstractEnIn this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.
dc.language.isoen
dc.publisherElsevier
dc.subject.enCell-centered Lagrangian hydrodynamics
dc.subject.enNode-centered solver
dc.subject.enGodunov-type method
dc.subject.enElastic-plastic flow
dc.subject.enHigh-order finite volume methods
dc.subject.enMulti-dimensional unstructured mesh
dc.subject.enGeneralized Riemann Problem
dc.subject.enGeometric conservation law
dc.title.enA nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halSciences de l'ingénieur [physics]
dc.description.sponsorshipEuropeAdaptive Schemes for Deterministic and Stochastic Flow Problems
bordeaux.journalJournal of Computational Physics
bordeaux.volume235
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00934989
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00934989v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2013-02-15&rft.volume=235&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=MAIRE,%20P.H.&ABGRALL,%20Remi&BREIL,%20J%C3%A9r%C3%B4me&LOUB%C3%88RE,%20Rapha%C3%ABl&REBOURCET,%20Bernard&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée