Semi-artificial datasets as a resource for validation of bioinformatics pipelines for plant virus detection
TAMISIER, Lucie
Gembloux Agro-Bio Tech [Faculté universitaire des sciences agronomiques de Gembloux] [[FUSAGx]]
Voir plus >
Gembloux Agro-Bio Tech [Faculté universitaire des sciences agronomiques de Gembloux] [[FUSAGx]]
TAMISIER, Lucie
Gembloux Agro-Bio Tech [Faculté universitaire des sciences agronomiques de Gembloux] [[FUSAGx]]
Gembloux Agro-Bio Tech [Faculté universitaire des sciences agronomiques de Gembloux] [[FUSAGx]]
FOUILLIEN, Nicolas
Gembloux Agro-Bio Tech [Faculté universitaire des sciences agronomiques de Gembloux] [[FUSAGx]]
Gembloux Agro-Bio Tech [Faculté universitaire des sciences agronomiques de Gembloux] [[FUSAGx]]
LEFEBVRE, Marie
Plateforme Exploration du Métabolisme [PFEM]
Institut National de la Recherche Agronomique [INRA]
Université Blaise Pascal - Clermont-Ferrand 2 [UBP]
MetaboHUB-Clermont
MetaboHUB
Biologie du fruit et pathologie [BFP]
Plateforme Exploration du Métabolisme [PFEM]
Institut National de la Recherche Agronomique [INRA]
Université Blaise Pascal - Clermont-Ferrand 2 [UBP]
MetaboHUB-Clermont
MetaboHUB
Biologie du fruit et pathologie [BFP]
MARGARIA, Paolo
Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH / Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures [DSMZ]
< Réduire
Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH / Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures [DSMZ]
Langue
en
Autre communication scientifique (congrès sans actes - poster - séminaire...)
Ce document a été publié dans
International Advances in Plant Virology, 2021-04-20, Avignon (en ligne).
Résumé en anglais
In the last decade, High-Throughput Sequencing (HTS) has revolutionized plant virus discovery and diagnosis. Currently, many bioinformatics pipelines for virus detection are available, making the choice of a suitable one ...Lire la suite >
In the last decade, High-Throughput Sequencing (HTS) has revolutionized plant virus discovery and diagnosis. Currently, many bioinformatics pipelines for virus detection are available, making the choice of a suitable one difficult. A robust benchmarking is needed for the unbiased comparison of the pipelines.We present 7 semi-artificial datasets composed of real RNA-seq datasets from virus-infected plants spiked with artificial virus reads. Each dataset addresses challenges that could prevent virus detection (i.e. low viral concentration, new viral species, non-complete virus genome, etc). We also present 3 real datasets showing a challenging virus composition as well as 8 completely artificial datasets to test haplotype reconstruction software. With these datasets, we hope to encourage virologists, diagnosticians and bioinformaticians to evaluate and benchmark their pipeline(s).< Réduire
Origine
Importé de halUnités de recherche