Pest detection from a biology-informed inverse problem and pheromone sensors
MALOU, Thibault
Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] [MaIAGE]
Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] [MaIAGE]
LABARTHE, Simon
Pleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
Biodiversité, Gènes & Communautés [BioGeCo]
Pleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
Biodiversité, Gènes & Communautés [BioGeCo]
LAROCHE, Béatrice
Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] [MaIAGE]
Dynamiques de populations multi-échelles pour des systèmes physiologiques / MUltiSCAle population dynamics for physiological systems [MUSCA]
Voir plus >
Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] [MaIAGE]
Dynamiques de populations multi-échelles pour des systèmes physiologiques / MUltiSCAle population dynamics for physiological systems [MUSCA]
MALOU, Thibault
Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] [MaIAGE]
Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] [MaIAGE]
LABARTHE, Simon
Pleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
Biodiversité, Gènes & Communautés [BioGeCo]
Pleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
Biodiversité, Gènes & Communautés [BioGeCo]
LAROCHE, Béatrice
Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] [MaIAGE]
Dynamiques de populations multi-échelles pour des systèmes physiologiques / MUltiSCAle population dynamics for physiological systems [MUSCA]
Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] [MaIAGE]
Dynamiques de populations multi-échelles pour des systèmes physiologiques / MUltiSCAle population dynamics for physiological systems [MUSCA]
ADAMCZYK, Katarzyna
Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] [MaIAGE]
< Réduire
Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] [MaIAGE]
Langue
en
Communication dans un congrès
Ce document a été publié dans
DSABNS 2024 - 15th Conference on Dynamical Systems Applied to Biology and Natural Sciences, 2024-02-06, Lisbonne.
Résumé en anglais
One third of the annual world's crop production is directly or indirectly damaged by insects. Early detection of invasive insect pests is key for optimal treatment before infestation. Existing detection devices are based ...Lire la suite >
One third of the annual world's crop production is directly or indirectly damaged by insects. Early detection of invasive insect pests is key for optimal treatment before infestation. Existing detection devices are based on pheromone traps: attracting pheromones are released to lure insects into the traps, with the number of captures indicating the population levels. Promising new sensors are on development to directly detect heromones produced by the pests themselves and dispersed in the environment. Inferring the pheromone emission would allow locating the pest's habitat, before infestation. This early detection enables to perform pesticide-free elimination treatments, in a precision agriculture framework. In order to identify the sources of pheromone emission from signals produced by sensors spatially positioned in the landscape, the inference of the pheromone emission (inverse problem) is performed. Classical inference is conducted by combining the data and the so-called direct model [1]. In the present case, this entails combining the data from the pheromone sensors and the pheromone concentration dispersion that is a 2D reaction-diffusion-convection model [2]. In the proposed method, the inference involves not only the coupling of the pheromone dispersion model with the pheromone sensors data but also incorporates a priori biological knowledge on pest behaviour (favourite habitat, insect clustering for reproduction, population dynamic behaviour...). This information is introduced to constrain the inverse problem towards biologically relevant solutions. Different biology-informed constraints are tested, and the accuracy of the solutions of the inverse problems is assessed on simulated noisy data.[1] Bocquet, M. (2014). Introduction to the Principles and Methods of Data Assimilation in the Geosciences. Lectures note.[2] Stockie, J.M. (2011). The Mathematics of Atmospheric Dispersion Modeling. SIAM Review.< Réduire
Project ANR
Early detection of pest insects using pheromone receptor-based olfactory sensors - ANR-20-PCPA-0007
Origine
Importé de halUnités de recherche