The Newton tree: geometric interpretation and applications to the motivic zeta function and the log canonical threshold
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | CASSOU-NOGUÈS, Pierrette | |
hal.structure.identifier | Department of Mathematics | |
dc.contributor.author | VEYS, Willem | |
dc.date.accessioned | 2024-04-04T03:21:29Z | |
dc.date.available | 2024-04-04T03:21:29Z | |
dc.date.created | 2013-10-30 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194661 | |
dc.description.abstractEn | Let I be an arbitrary ideal in C[[x,y]]. We use the Newton algorithm to compute by induction the motivic zeta function of the ideal, yielding only few poles, associated to the faces of the successive Newton polygons. We associate a minimal Newton tree to I, related to using good coordinates in the Newton algorithm, and show that it has a conceptual geometric interpretation in terms of the log canonical model of I. We also compute the log canonical threshold from a Newton polygon and strengthen Corti's inequalities. | |
dc.language.iso | en | |
dc.title.en | The Newton tree: geometric interpretation and applications to the motivic zeta function and the log canonical threshold | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Géométrie algébrique [math.AG] | |
dc.identifier.arxiv | 1310.8260 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-01026274 | |
hal.version | 1 | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01026274v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=CASSOU-NOGU%C3%88S,%20Pierrette&VEYS,%20Willem&rft.genre=preprint |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |