Show simple item record

hal.structure.identifierÉquipe EDP et Physique Mathématique
dc.contributor.authorPOPOFF, Nicolas
hal.structure.identifierCentre de Physique Théorique - UMR 7332 [CPT]
hal.structure.identifierCPT - E8 Dynamique quantique et analyse spectrale
dc.contributor.authorSOCCORSI, Eric
dc.date.accessioned2024-04-04T03:20:31Z
dc.date.available2024-04-04T03:20:31Z
dc.date.created2014
dc.date.issued2016
dc.identifier.issn0360-5302
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194592
dc.description.abstractEnWe consider the Dirichlet Laplacian in the half-plane with constant magnetic field. Due to the translational invariance this operator admits a fiber decomposition and a family of dis- persion curves, that are real analytic functions. Each of them is simple and monotically decreasing from positive infinity to a finite value, which is the corresponding Landau level. These finite limits are thresholds in the purely absolutely continuous spectrum of the magnetic Laplacian. We prove a limiting absorption principle for this operator both outside and at the thresholds. Finally, we establish analytic and decay properties for functions lying in the absorption spaces. We point out that the analysis carried out in this paper is rather general and can be adapted to a wide class of fibered magnetic Laplacians with thresholds in their spectrum that are finite limits of their band functions.
dc.language.isoen
dc.publisherTaylor & Francis
dc.subject.enlimit absorption
dc.subject.enconstant magnetic field
dc.subject.enthresholds
dc.subject.enTwo-dimensional Schrödinger operators
dc.subject.enthresholds.
dc.title.enLimiting absorption principle for the Magnetic Dirichlet Laplacian in a half-plane.
dc.typeArticle de revue
dc.identifier.doi10.1080/03605302.2016.1167081
dc.subject.halMathématiques [math]/Théorie spectrale [math.SP]
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.identifier.arxiv1409.6082
bordeaux.journalCommunications in Partial Differential Equations
bordeaux.page879-893
bordeaux.volume41
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue6
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01066569
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01066569v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Communications%20in%20Partial%20Differential%20Equations&rft.date=2016&rft.volume=41&rft.issue=6&rft.spage=879-893&rft.epage=879-893&rft.eissn=0360-5302&rft.issn=0360-5302&rft.au=POPOFF,%20Nicolas&SOCCORSI,%20Eric&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record