Limiting absorption principle for the Magnetic Dirichlet Laplacian in a half-plane.
SOCCORSI, Eric
Centre de Physique Théorique - UMR 7332 [CPT]
CPT - E8 Dynamique quantique et analyse spectrale
Centre de Physique Théorique - UMR 7332 [CPT]
CPT - E8 Dynamique quantique et analyse spectrale
SOCCORSI, Eric
Centre de Physique Théorique - UMR 7332 [CPT]
CPT - E8 Dynamique quantique et analyse spectrale
< Leer menos
Centre de Physique Théorique - UMR 7332 [CPT]
CPT - E8 Dynamique quantique et analyse spectrale
Idioma
en
Article de revue
Este ítem está publicado en
Communications in Partial Differential Equations. 2016, vol. 41, n° 6, p. 879-893
Taylor & Francis
Resumen en inglés
We consider the Dirichlet Laplacian in the half-plane with constant magnetic field. Due to the translational invariance this operator admits a fiber decomposition and a family of dis- persion curves, that are real analytic ...Leer más >
We consider the Dirichlet Laplacian in the half-plane with constant magnetic field. Due to the translational invariance this operator admits a fiber decomposition and a family of dis- persion curves, that are real analytic functions. Each of them is simple and monotically decreasing from positive infinity to a finite value, which is the corresponding Landau level. These finite limits are thresholds in the purely absolutely continuous spectrum of the magnetic Laplacian. We prove a limiting absorption principle for this operator both outside and at the thresholds. Finally, we establish analytic and decay properties for functions lying in the absorption spaces. We point out that the analysis carried out in this paper is rather general and can be adapted to a wide class of fibered magnetic Laplacians with thresholds in their spectrum that are finite limits of their band functions.< Leer menos
Palabras clave en inglés
limit absorption
constant magnetic field
thresholds
Two-dimensional Schrödinger operators
thresholds.
Orígen
Importado de HalCentros de investigación