Riesz transforms of the Hodge-de Rham Laplacian on Riemannian manifolds
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MAGNIEZ, Jocelyn | |
dc.date.accessioned | 2024-04-04T03:20:25Z | |
dc.date.available | 2024-04-04T03:20:25Z | |
dc.date.created | 2014 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194586 | |
dc.description.abstractEn | Let $M$ be a complete non-compact Riemannian manifold satisfying the doubling volume property. Let $\overrightarrow{\Delta}$ be the Hodge-de Rham Laplacian acting on $1$-differential forms. According to the Bochner formula, $\overrightarrow{\Delta}=\nabla^*\nabla+R_+-R_-$ where $R_+$ and $R_-$ are respectively the positive and negative part of the Ricci curvature and $\nabla$ is the Levi-Civita connection. We study the boundedness of the Riesz transform $d^*(\overrightarrow{\Delta})^{-\frac{1}{2}}$ from $L^p(\Lambda^1T^*M)$ to $L^p(M)$ and of the Riesz transform $d(\overrightarrow{\Delta})^{-\frac{1}{2}}$ from $L^p(\Lambda^1T^*M)$ to $L^p(\Lambda^2T^*M)$. We prove that, if the heat kernel on functions $p_t(x,y)$ satisfies a Gaussian upper bound and if the negative part $R_-$ of the Ricci curvature is $\epsilon$-sub-critical for some $\epsilon\in[0,1)$, then $d^*(\overrightarrow{\Delta})^{-\frac{1}{2}}$ is bounded from $L^p(\Lambda^1T^*M)$ to $L^p(M)$ and $d(\overrightarrow{\Delta})^{-\frac{1}{2}}$ is bounded from $L^p(\Lambda^1T^*M)$ to $L^p(\Lambda^2T^* M)$ for $p\in(p_0',2]$ where $p_0>2$ depends on $\epsilon$ and on a constant appearing in the doubling volume property. A duality argument gives the boundedness of the Riesz transform $d(\Delta)^{-\frac{1}{2}}$ from $L^p(M)$ to $L^p(\Lambda^1T^*M)$ for $p\in [2,p_0)$ where $\Delta$ is the non-negative Laplace-Beltrami operator. We also give a condition on $R_-$ to be $\epsilon$-sub-critical under both analytic and geometric assumptions. | |
dc.language.iso | en | |
dc.subject.en | Riemannian manifolds | |
dc.subject.en | Riesz transforms | |
dc.subject.en | Hodge- de Rham Laplacian | |
dc.subject.en | Riemannian manifolds. | |
dc.title.en | Riesz transforms of the Hodge-de Rham Laplacian on Riemannian manifolds | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.identifier.arxiv | 1410.0034 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-01070228 | |
hal.version | 1 | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01070228v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=MAGNIEZ,%20Jocelyn&rft.genre=preprint |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |