Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBRUNEAU, Vincent
hal.structure.identifierFacultad de Matemáticas [Santiago de Chile]
dc.contributor.authorSAMBOU, Diomba
dc.date.accessioned2024-04-04T03:18:26Z
dc.date.available2024-04-04T03:18:26Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194403
dc.description.abstractEnWe study the asymptotic distribution of the resonances near the Landau levels $\Lambda_q =(2q+1)b$, $q \in \mathbb{N}$, of the Dirichlet (resp. Neumann, resp. Robin) realization in the exterior of a compact domain of $\mathbb{R}^3$ of the 3D Schrödinger operator with constant magnetic field of scalar intensity $b>0$. We investigate the corresponding resonance counting function and obtain the main asymptotic term. In particular, we prove the accumulation of resonances at the Landau levels and the existence of resonance free sectors. In some cases, it provides the discreteness of the set of embedded eigenvalues near the Landau levels.
dc.description.sponsorshipOpérateurs non-autoadjoints, analyse semiclassique et problèmes d'évolution - ANR-11-BS01-0019
dc.language.isoen
dc.title.enCOUNTING FUNCTION OF MAGNETIC RESONANCES FOR EXTERIOR PROBLEMS
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Théorie spectrale [math.SP]
dc.subject.halMathématiques [math]/Physique mathématique [math-ph]
dc.identifier.arxiv1505.06026
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01151888
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01151888v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BRUNEAU,%20Vincent&SAMBOU,%20Diomba&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record