Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorKOZIARZ, Vincent
hal.structure.identifierInstitut Élie Cartan de Lorraine [IECL]
dc.contributor.authorMAUBON, Julien
dc.date.accessioned2024-04-04T03:14:05Z
dc.date.available2024-04-04T03:14:05Z
dc.date.created2016-08
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194010
dc.description.abstractEnLet $\rho$ be a maximal representation of a uniform lattice $\Gamma\subset{\rm SU}(n,1)$, $n\geq 2$, in a classical Lie group of Hermitian type $H$. We prove that necessarily $H={\rm SU}(p,q)$ with $p\geq qn$ and there exists a holomorphic or antiholomorphic $\rho$-equivariant map from complex hyperbolic space to the symmetric space associated to ${\rm SU}(p,q)$. This map is moreover a totally geodesic homothetic embedding. In particular, up to a representation in a compact subgroup of ${\rm SU}(p,q)$, the representation $\rho$ extends to a representation of ${\rm SU}(n,1)$ in ${\rm SU}(p,q)$.
dc.language.isoen
dc.title.enMaximal representations of uniform complex hyperbolic lattices
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Géométrie différentielle [math.DG]
dc.subject.halMathématiques [math]/Géométrie algébrique [math.AG]
dc.identifier.arxiv1506.07274v2
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01166954
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01166954v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=KOZIARZ,%20Vincent&MAUBON,%20Julien&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record