Maximal representations of uniform complex hyperbolic lattices
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | KOZIARZ, Vincent | |
hal.structure.identifier | Institut Élie Cartan de Lorraine [IECL] | |
dc.contributor.author | MAUBON, Julien | |
dc.date.accessioned | 2024-04-04T03:14:05Z | |
dc.date.available | 2024-04-04T03:14:05Z | |
dc.date.created | 2016-08 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194010 | |
dc.description.abstractEn | Let $\rho$ be a maximal representation of a uniform lattice $\Gamma\subset{\rm SU}(n,1)$, $n\geq 2$, in a classical Lie group of Hermitian type $H$. We prove that necessarily $H={\rm SU}(p,q)$ with $p\geq qn$ and there exists a holomorphic or antiholomorphic $\rho$-equivariant map from complex hyperbolic space to the symmetric space associated to ${\rm SU}(p,q)$. This map is moreover a totally geodesic homothetic embedding. In particular, up to a representation in a compact subgroup of ${\rm SU}(p,q)$, the representation $\rho$ extends to a representation of ${\rm SU}(n,1)$ in ${\rm SU}(p,q)$. | |
dc.language.iso | en | |
dc.title.en | Maximal representations of uniform complex hyperbolic lattices | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Géométrie différentielle [math.DG] | |
dc.subject.hal | Mathématiques [math]/Géométrie algébrique [math.AG] | |
dc.identifier.arxiv | 1506.07274v2 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-01166954 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01166954v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=KOZIARZ,%20Vincent&MAUBON,%20Julien&rft.genre=preprint |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |