Show simple item record

hal.structure.identifierMax-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
dc.contributor.authorGIZON, Laurent
hal.structure.identifierAdvanced 3D Numerical Modeling in Geophysics [Magique 3D]
hal.structure.identifierLaboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
dc.contributor.authorBARUCQ, Hélène
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierAdvanced 3D Numerical Modeling in Geophysics [Magique 3D]
dc.contributor.authorDURUFLÉ, Marc
hal.structure.identifierMax-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
dc.contributor.authorHANSON, Chris
hal.structure.identifierMax-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
dc.contributor.authorLEGUÈBE, Michael
hal.structure.identifierMax-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
dc.contributor.authorBIRCH, Aaron
hal.structure.identifierAdvanced 3D Numerical Modeling in Geophysics [Magique 3D]
hal.structure.identifierLaboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
dc.contributor.authorCHABASSIER, Juliette
hal.structure.identifierGeorg-August-University = Georg-August-Universität Göttingen
dc.contributor.authorFOURNIER, Damien
hal.structure.identifierGeorg-August-University = Georg-August-Universität Göttingen
dc.contributor.authorHOHAGE, Thorsten
hal.structure.identifierMax-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
dc.contributor.authorPAPINI, Emanuele
dc.date.accessioned2024-04-04T03:12:46Z
dc.date.available2024-04-04T03:12:46Z
dc.date.created2016
dc.date.issued2017-04
dc.identifier.issn0004-6361
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193895
dc.description.abstractEnContext. Local helioseismology has so far relied on semi-analytical methods to compute the spatial sensitivity of wave travel times to perturbations in the solar interior. These methods are cumbersome and lack flexibility. Aims. Here we propose a convenient framework for numerically solving the forward problem of time-distance helioseismology in the frequency domain. The fundamental quantity to be computed is the cross-covariance of the seismic wavefield. Methods. We choose sources of wave excitation that enable us to relate the cross-covariance of the oscillations to the Green's function in a straightforward manner. We illustrate the method by considering the 3D acoustic wave equation in an axisymmetric reference solar model, ignoring the effects of gravity on the waves. The symmetry of the background model around the rotation axis implies that the Green's function can be written as a sum of longitudinal Fourier modes, leading to a set of independent 2D problems. We use a high-order finite-element method to solve the 2D wave equation in frequency space. The computation is embarrassingly parallel, with each frequency and each azimuthal order solved independently on a computer cluster. Results. We compute travel-time sensitivity kernels in spherical geometry for flows, sound speed, and density perturbations under the first Born approximation. Convergence tests show that travel times can be computed with a numerical precision better than one millisecond, as required by the most precise travel-time measurements. Conclusions. The method presented here is computationally efficient and will be used to interpret travel-time measurements in order to infer, e.g., the large-scale meridional flow in the solar convection zone. It allows the implementation of (full-waveform) iterative inversions, whereby the axisymmetric background model is updated at each iteration.
dc.language.isoen
dc.publisherEDP Sciences
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.ensolar physics
dc.subject.ennumerical methods
dc.subject.enhelioseismology
dc.title.enComputational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows
dc.typeArticle de revue
dc.identifier.doi10.1051/0004-6361/201629470
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.identifier.arxiv1611.01666v1
bordeaux.journalAstronomy and Astrophysics - A&A
bordeaux.pageA35
bordeaux.volume600
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01403332
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01403332v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy%20and%20Astrophysics%20-%20A&A&rft.date=2017-04&rft.volume=600&rft.spage=A35&rft.epage=A35&rft.eissn=0004-6361&rft.issn=0004-6361&rft.au=GIZON,%20Laurent&BARUCQ,%20H%C3%A9l%C3%A8ne&DURUFL%C3%89,%20Marc&HANSON,%20Chris&LEGU%C3%88BE,%20Michael&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record