Computing distances and geodesics between manifold-valued curves in the SRV framework
hal.structure.identifier | Thales Research and Technology [Palaiseau] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | LE BRIGANT, Alice | |
dc.date.accessioned | 2024-04-04T03:10:44Z | |
dc.date.available | 2024-04-04T03:10:44Z | |
dc.date.created | 2016-01 | |
dc.date.issued | 2017-06 | |
dc.identifier.issn | 1941-4889 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193710 | |
dc.description.abstractEn | This paper focuses on the study of open curves in a Riemannian manifold M, and proposes a reparametrization invariant metric on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava et al. to define a Riemannian metric on the space of immersions M'=Imm([0,1],M) by pullback of a natural metric on the tangent bundle TM'. This induces a first-order Sobolev metric on M' and leads to a distance which takes into account the distance between the origins in M and the L2-distance between the SRV representations of the curves. The geodesic equations for this metric are given and exploited to define an exponential map on M'. The optimal deformation of one curve into another can then be constructed using geodesic shooting, which requires to characterize the Jacobi fields of M'. The particular case of curves lying in the hyperbolic half-plane is considered as an example, in the setting of radar signal processing. | |
dc.language.iso | en | |
dc.publisher | American Institute of Mathematical Sciences (AIMS) | |
dc.subject.en | Reparametrization invariance | |
dc.subject.en | Sobolev metric | |
dc.subject.en | Geodesic Shooting | |
dc.subject.en | Square Root Velocity Function | |
dc.title.en | Computing distances and geodesics between manifold-valued curves in the SRV framework | |
dc.type | Article de revue | |
dc.identifier.doi | 10.3934/jgm.2017005 | |
dc.subject.hal | Mathématiques [math]/Géométrie différentielle [math.DG] | |
dc.identifier.arxiv | 1601.02358 | |
bordeaux.journal | Journal of Geometric Mechanics | |
bordeaux.page | 131-156 | |
bordeaux.volume | 9 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 2 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01253495 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01253495v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Geometric%20Mechanics&rft.date=2017-06&rft.volume=9&rft.issue=2&rft.spage=131-156&rft.epage=131-156&rft.eissn=1941-4889&rft.issn=1941-4889&rft.au=LE%20BRIGANT,%20Alice&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |