Computing distances and geodesics between manifold-valued curves in the SRV framework
LE BRIGANT, Alice
Thales Research and Technology [Palaiseau]
Institut de Mathématiques de Bordeaux [IMB]
Thales Research and Technology [Palaiseau]
Institut de Mathématiques de Bordeaux [IMB]
LE BRIGANT, Alice
Thales Research and Technology [Palaiseau]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Thales Research and Technology [Palaiseau]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Geometric Mechanics. 2017-06, vol. 9, n° 2, p. 131-156
American Institute of Mathematical Sciences (AIMS)
Résumé en anglais
This paper focuses on the study of open curves in a Riemannian manifold M, and proposes a reparametrization invariant metric on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava ...Lire la suite >
This paper focuses on the study of open curves in a Riemannian manifold M, and proposes a reparametrization invariant metric on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava et al. to define a Riemannian metric on the space of immersions M'=Imm([0,1],M) by pullback of a natural metric on the tangent bundle TM'. This induces a first-order Sobolev metric on M' and leads to a distance which takes into account the distance between the origins in M and the L2-distance between the SRV representations of the curves. The geodesic equations for this metric are given and exploited to define an exponential map on M'. The optimal deformation of one curve into another can then be constructed using geodesic shooting, which requires to characterize the Jacobi fields of M'. The particular case of curves lying in the hyperbolic half-plane is considered as an example, in the setting of radar signal processing.< Réduire
Mots clés en anglais
Reparametrization invariance
Sobolev metric
Geodesic Shooting
Square Root Velocity Function
Origine
Importé de halUnités de recherche