A Finite-Difference Method for the Variable Coefficient Poisson Equation on Hierarchical Cartesian Meshes
RAELI, Alice
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
BERGMANN, Michel
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
IOLLO, Angelo
Institut de Mathématiques de Bordeaux [IMB]
Université de Bordeaux [UB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Université de Bordeaux [UB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
RAELI, Alice
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
BERGMANN, Michel
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
IOLLO, Angelo
Institut de Mathématiques de Bordeaux [IMB]
Université de Bordeaux [UB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Université de Bordeaux [UB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Computational Physics. 2017-11-10, vol. 355, p. 59-77
Elsevier
Résumé en anglais
We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. ...Lire la suite >
We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations. Finite difference method; Hierarchical Cartesian grid; Octree/Quadtree; Variable coefficient Poisson equation 1< Réduire
Origine
Importé de halUnités de recherche