Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorKOZIARZ, Vincent
hal.structure.identifierUniversidade de Trás-os-Montes e Alto Douro [UTAD]
dc.contributor.authorRITO, Carlos
hal.structure.identifierInstitut de Mathématiques de Marseille [I2M]
dc.contributor.authorROULLEAU, Xavier
dc.date.accessioned2024-04-04T03:01:15Z
dc.date.available2024-04-04T03:01:15Z
dc.date.issued2021
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192885
dc.description.abstractEnWe study Deraux's non arithmetic orbifold ball quotient surfaces obtained as birational transformations of a quotient $X$ of a particular Abelian surface $A$. Using the fact that $A$ is the Jacobian of the Bolza genus $2$ curve, we identify $X$ as the weighted projective plane $\mathbb{P}(1,3,8)$. We compute the equation of the mirror $M$ of the orbifold ball quotient $(X,M)$ and by taking the quotient by an involution, we obtain an orbifold ball quotient surface with mirror birational to an interesting configuration of plane curves of degrees $1,2$ and $3$. We also exhibit an arrangement of four conics in the plane which provides the above-mentioned ball quotient orbifold surfaces.
dc.language.isoen
dc.publisherUniversity of Michigan
dc.title.enThe Bolza curve and some orbifold ball quotient surfaces
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Géométrie algébrique [math.AG]
dc.subject.halMathématiques [math]/Topologie géométrique [math.GT]
dc.identifier.arxiv1904.00793
bordeaux.journalMichigan Mathematical Journal
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02112689
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02112689v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Michigan%20Mathematical%20Journal&rft.date=2021&rft.au=KOZIARZ,%20Vincent&RITO,%20Carlos&ROULLEAU,%20Xavier&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record