The Bolza curve and some orbifold ball quotient surfaces
Language
en
Article de revue
This item was published in
Michigan Mathematical Journal. 2021
University of Michigan
English Abstract
We study Deraux's non arithmetic orbifold ball quotient surfaces obtained as birational transformations of a quotient $X$ of a particular Abelian surface $A$. Using the fact that $A$ is the Jacobian of the Bolza genus $2$ ...Read more >
We study Deraux's non arithmetic orbifold ball quotient surfaces obtained as birational transformations of a quotient $X$ of a particular Abelian surface $A$. Using the fact that $A$ is the Jacobian of the Bolza genus $2$ curve, we identify $X$ as the weighted projective plane $\mathbb{P}(1,3,8)$. We compute the equation of the mirror $M$ of the orbifold ball quotient $(X,M)$ and by taking the quotient by an involution, we obtain an orbifold ball quotient surface with mirror birational to an interesting configuration of plane curves of degrees $1,2$ and $3$. We also exhibit an arrangement of four conics in the plane which provides the above-mentioned ball quotient orbifold surfaces.Read less <
Origin
Hal imported