A Virtual Element Method for a Nonlocal FitzHugh-Nagumo Model of Cardiac Electrophysiology
hal.structure.identifier | Universidad del Bio Bio [Concepción] [UBB] | |
dc.contributor.author | ANAYA, Veronica | |
hal.structure.identifier | Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BENDAHMANE, Mostafa | |
hal.structure.identifier | Universidad del Bio Bio [Concepción] [UBB] | |
dc.contributor.author | MORA, David | |
hal.structure.identifier | Departamento de Ingeniería Matemática [Santiago] [DIM] | |
hal.structure.identifier | Universidad del Bio Bio [Concepción] [UBB] | |
dc.contributor.author | SEPULVEDA, Mauricio | |
dc.date | 2019 | |
dc.date.accessioned | 2024-04-04T03:00:56Z | |
dc.date.available | 2024-04-04T03:00:56Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0272-4979 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192856 | |
dc.description.abstractEn | We present a virtual element method (VEM) for a nonlocal reaction–diffusion system of the cardiac electric field. For this system, we analyze an H1-conforming discretization by means of VEM that can make use of general polygonal meshes. Under standard assumptions on the computational domain, we establish the convergence of the discrete solution by considering a series of a priori estimates and by using a general Lp compactness criterion. Moreover, we obtain optimal order space-time error estimates in the L2 norm. Finally, we report some numerical tests supporting the theoretical results. | |
dc.language.iso | en | |
dc.publisher | Oxford University Press (OUP) | |
dc.subject.en | Error estimates | |
dc.subject.en | Convergence | |
dc.subject.en | FitzHugh–Nagumo equations | |
dc.subject.en | Virtual element method | |
dc.title.en | A Virtual Element Method for a Nonlocal FitzHugh-Nagumo Model of Cardiac Electrophysiology | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1093/imanum/drz001 | |
dc.subject.hal | Mathématiques [math] | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
bordeaux.journal | IMA Journal of Numerical Analysis | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02142031 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02142031v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=IMA%20Journal%20of%20Numerical%20Analysis&rft.date=2019&rft.eissn=0272-4979&rft.issn=0272-4979&rft.au=ANAYA,%20Veronica&BENDAHMANE,%20Mostafa&MORA,%20David&SEPULVEDA,%20Mauricio&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |