Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorFANELLI, Andrea
dc.contributor.authorSCHRÖER, Stefan
dc.date.accessioned2024-04-04T02:56:11Z
dc.date.available2024-04-04T02:56:11Z
dc.date.issued2020-08-19
dc.identifier.issn2491-6765
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192442
dc.description.abstractEnWe introduce and study the maximal unipotent finite quotient for algebraic group schemes in positive characteristics. Applied to Picard schemes, this quotient encodes unusual torsion. We construct integral Fano threefolds where such unusual torsion actually appears. The existence of such threefolds is surprising, because the torsion vanishes for del Pezzo surfaces. Our construction relies on the theory of exceptional Enriques surfaces, as developed by Ekedahl and Shepherd-Barron.
dc.language.isoen
dc.publisherEPIGA
dc.title.enThe maximal unipotent finite quotient, unusual torsion in Fano threefolds, and exceptional Enriques surfaces
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Géométrie algébrique [math.AG]
dc.identifier.arxiv1905.04566
bordeaux.journalÉpijournal de Géométrie Algébrique
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02489761
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02489761v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=%C3%89pijournal%20de%20G%C3%A9om%C3%A9trie%20Alg%C3%A9brique&rft.date=2020-08-19&rft.eissn=2491-6765&rft.issn=2491-6765&rft.au=FANELLI,%20Andrea&SCHR%C3%96ER,%20Stefan&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record