The maximal unipotent finite quotient, unusual torsion in Fano threefolds, and exceptional Enriques surfaces
Idioma
en
Article de revue
Este ítem está publicado en
Épijournal de Géométrie Algébrique. 2020-08-19
EPIGA
Resumen en inglés
We introduce and study the maximal unipotent finite quotient for algebraic group schemes in positive characteristics. Applied to Picard schemes, this quotient encodes unusual torsion. We construct integral Fano threefolds ...Leer más >
We introduce and study the maximal unipotent finite quotient for algebraic group schemes in positive characteristics. Applied to Picard schemes, this quotient encodes unusual torsion. We construct integral Fano threefolds where such unusual torsion actually appears. The existence of such threefolds is surprising, because the torsion vanishes for del Pezzo surfaces. Our construction relies on the theory of exceptional Enriques surfaces, as developed by Ekedahl and Shepherd-Barron.< Leer menos
Orígen
Importado de HalCentros de investigación