Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierUniversity of the Philippines [UP System]
dc.contributor.authorPEREZ III, Rolando
dc.date.accessioned2024-04-04T02:49:21Z
dc.date.available2024-04-04T02:49:21Z
dc.date.created2020-10-08
dc.date.issued2020-10-08
dc.identifier.issn0008-4395
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191816
dc.description.abstractEnWe prove that if f and g are holomorphic functions on an open connected domain, with the same moduli on two intersecting segments, then f = g up to the multiplication of a unimodular constant, provided the segments make an angle that is an irrational multiple of π. We also prove that if f and g are functions in the Nevanlinna class, and if |f | = |g| on the unit circle and on a circle inside the unit disc, then f = g up to the multiplication of a unimodular constant.
dc.language.isoen
dc.publisherCambridge University Press
dc.rights.urihttp://hal.archives-ouvertes.fr/licences/publicDomain/
dc.title.enA Note on the Phase Retrieval of Holomorphic Functions
dc.typeArticle de revue
dc.identifier.doi10.4153/S000843952000082X
dc.subject.halMathématiques [math]/Variables complexes [math.CV]
dc.subject.halMathématiques [math]/Analyse classique [math.CA]
dc.identifier.arxiv2009.02061
bordeaux.journalCanadian Mathematical Bulletin
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02929358
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02929358v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Canadian%20Mathematical%20Bulletin&rft.date=2020-10-08&rft.eissn=0008-4395&rft.issn=0008-4395&rft.au=PEREZ%20III,%20Rolando&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record