A Note on the Phase Retrieval of Holomorphic Functions
PEREZ III, Rolando
Institut de Mathématiques de Bordeaux [IMB]
University of the Philippines [UP System]
Institut de Mathématiques de Bordeaux [IMB]
University of the Philippines [UP System]
PEREZ III, Rolando
Institut de Mathématiques de Bordeaux [IMB]
University of the Philippines [UP System]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
University of the Philippines [UP System]
Langue
en
Article de revue
Ce document a été publié dans
Canadian Mathematical Bulletin. 2020-10-08
Cambridge University Press
Résumé en anglais
We prove that if f and g are holomorphic functions on an open connected domain, with the same moduli on two intersecting segments, then f = g up to the multiplication of a unimodular constant, provided the segments make ...Lire la suite >
We prove that if f and g are holomorphic functions on an open connected domain, with the same moduli on two intersecting segments, then f = g up to the multiplication of a unimodular constant, provided the segments make an angle that is an irrational multiple of π. We also prove that if f and g are functions in the Nevanlinna class, and if |f | = |g| on the unit circle and on a circle inside the unit disc, then f = g up to the multiplication of a unimodular constant.< Réduire
Origine
Importé de halUnités de recherche