Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorGOLENIA, Sylvain
hal.structure.identifierChercheur indépendant
dc.contributor.authorMANDICH, Marc Adrien
dc.date.accessioned2024-04-04T02:47:36Z
dc.date.available2024-04-04T02:47:36Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191658
dc.description.abstractEnCommutator methods are applied to get limiting absorption principles for the discrete standard and Molchanov-Vainberg Schr\"odinger operators $H_{\mathrm{std}}= \Delta+V$ and $H_{\mathrm{MV}} = D+V$ on $\ell^2(\mathbb{Z}^d)$, with emphasis on $d=1,2,3$. Considered are electric potentials $V$ satisfying a long range condition of the type: $V-\tau_j ^{\kappa}V$ decays appropriately for some $\kappa \in \mathbb{N}$ and all $1 \leq j \leq d$, where $\tau_j ^{\kappa} V$ is the potential shifted by $\kappa$ units on the $j^{\text{th}}$ coordinate. More comprehensive results are obtained for specific small values of $\kappa$, such as $\kappa =1,2,3,4$. In this article, we work in a simplified framework in which the main takeaway appears to be the existence of bands where a limiting absorption principle holds, and hence absolutely continuous (a.c.) spectrum, for $\kappa>1$ and $\Delta$ (resp.\ $\kappa>2$ and $D$). Other decay conditions for $V$ arise from an isomorphism between $\Delta$ and $D$ in dimension 2. Oscillating potentials are natural examples in application.
dc.language.isoen
dc.subject.en2010 Mathematics Subject Classification. 39A70
dc.subject.en81Q10
dc.subject.en47B25
dc.subject.en47A10 limiting absorption principle
dc.subject.endiscrete Schrödinger operator
dc.subject.enlong range potential
dc.subject.enWigner-von Neumann potential
dc.subject.en2010 Mathematics Subject Classification. 39A70
dc.subject.enMourre theory
dc.subject.enweighted Mourre theory
dc.subject.enChebyshev polynomials
dc.title.enBands of pure a.c. spectrum for lattice Schr{\"o}dinger operators with a more general long range condition. Part I
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Physique mathématique [math-ph]
dc.subject.halMathématiques [math]/Théorie spectrale [math.SP]
dc.subject.halMathématiques [math]/Analyse fonctionnelle [math.FA]
dc.identifier.arxiv2102.00726
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-03118830
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03118830v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=GOLENIA,%20Sylvain&MANDICH,%20Marc%20Adrien&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record