Bands of pure a.c. spectrum for lattice Schr{\"o}dinger operators with a more general long range condition. Part I
Idioma
en
Document de travail - Pré-publication
Resumen en inglés
Commutator methods are applied to get limiting absorption principles for the discrete standard and Molchanov-Vainberg Schr\"odinger operators $H_{\mathrm{std}}= \Delta+V$ and $H_{\mathrm{MV}} = D+V$ on $\ell^2(\mathbb{Z}^d)$, ...Leer más >
Commutator methods are applied to get limiting absorption principles for the discrete standard and Molchanov-Vainberg Schr\"odinger operators $H_{\mathrm{std}}= \Delta+V$ and $H_{\mathrm{MV}} = D+V$ on $\ell^2(\mathbb{Z}^d)$, with emphasis on $d=1,2,3$. Considered are electric potentials $V$ satisfying a long range condition of the type: $V-\tau_j ^{\kappa}V$ decays appropriately for some $\kappa \in \mathbb{N}$ and all $1 \leq j \leq d$, where $\tau_j ^{\kappa} V$ is the potential shifted by $\kappa$ units on the $j^{\text{th}}$ coordinate. More comprehensive results are obtained for specific small values of $\kappa$, such as $\kappa =1,2,3,4$. In this article, we work in a simplified framework in which the main takeaway appears to be the existence of bands where a limiting absorption principle holds, and hence absolutely continuous (a.c.) spectrum, for $\kappa>1$ and $\Delta$ (resp.\ $\kappa>2$ and $D$). Other decay conditions for $V$ arise from an isomorphism between $\Delta$ and $D$ in dimension 2. Oscillating potentials are natural examples in application.< Leer menos
Palabras clave en inglés
2010 Mathematics Subject Classification. 39A70
81Q10
47B25
47A10 limiting absorption principle
discrete Schrödinger operator
long range potential
Wigner-von Neumann potential
2010 Mathematics Subject Classification. 39A70
Mourre theory
weighted Mourre theory
Chebyshev polynomials
Orígen
Importado de HalCentros de investigación