Mostrar el registro sencillo del ítem
Artificial intelligence in CT for quantifying lung changes in the era of CFTR modulators
hal.structure.identifier | Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB] | |
hal.structure.identifier | CIC Bordeaux | |
hal.structure.identifier | Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux] | |
dc.contributor.author | DOURNES, Gael | |
hal.structure.identifier | University of Kansas [Kansas City] | |
dc.contributor.author | HALL, Chase | |
hal.structure.identifier | Cincinnati Children's Hospital Medical Center | |
dc.contributor.author | WILLMERING, Matthew | |
hal.structure.identifier | Cincinnati Children's Hospital Medical Center | |
dc.contributor.author | BRODY, Alan | |
hal.structure.identifier | Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux] | |
hal.structure.identifier | CIC Bordeaux | |
dc.contributor.author | MACEY, Julie | |
hal.structure.identifier | CIC Bordeaux | |
hal.structure.identifier | Hôpital Pellegrin | |
hal.structure.identifier | Biothérapies des maladies génétiques et cancers | |
dc.contributor.author | BUI, Stephanie | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Modélisation Mathématique pour l'Oncologie [MONC] | |
dc.contributor.author | DENIS DE SENNEVILLE, Baudouin | |
hal.structure.identifier | Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB] | |
hal.structure.identifier | CIC Bordeaux | |
hal.structure.identifier | Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux] | |
dc.contributor.author | BERGER, Patrick | |
hal.structure.identifier | Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB] | |
hal.structure.identifier | CIC Bordeaux | |
hal.structure.identifier | Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux] | |
dc.contributor.author | LAURENT, François | |
hal.structure.identifier | Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB] | |
hal.structure.identifier | CIC Bordeaux | |
hal.structure.identifier | Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux] | |
dc.contributor.author | BENLALA, Ilyes | |
hal.structure.identifier | University of Cincinnati [UC] | |
hal.structure.identifier | Cincinnati Children's Hospital Medical Center | |
dc.contributor.author | WOODS, Jason | |
dc.date.accessioned | 2024-04-04T02:43:46Z | |
dc.date.available | 2024-04-04T02:43:46Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 0903-1936 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191357 | |
dc.description.abstractEn | Background: Chest computed tomography (CT) remains the imaging standard for demonstrating cystic fibrosis (CF) airway structural disease in vivo. However, visual scoring systems as an outcome measure are time consuming, require training and lack high reproducibility. Our objective was to validate a fully automated artificial intelligence (AI)-driven scoring system of CF lung disease severity.Methods: Data were retrospectively collected in three CF reference centres, between 2008 and 2020, in 184 patients aged 4-54 years. An algorithm using three 2D convolutional neural networks was trained with 78 patients' CT scans (23 530 CT slices) for the semantic labelling of bronchiectasis, peribronchial thickening, bronchial mucus, bronchiolar mucus and collapse/consolidation. 36 patients' CT scans (11 435 CT slices) were used for testing versus ground-truth labels. The method's clinical validity was assessed in an independent group of 70 patients with or without lumacaftor/ivacaftor treatment (n=10 and n=60, respectively) with repeat examinations. Similarity and reproducibility were assessed using the Dice coefficient, correlations using the Spearman test, and paired comparisons using the Wilcoxon rank test.Results: The overall pixelwise similarity of AI-driven versus ground-truth labels was good (Dice 0.71). All AI-driven volumetric quantifications had moderate to very good correlations to a visual imaging scoring (p<0.001) and fair to good correlations to forced expiratory volume in 1 s % predicted at pulmonary function tests (p<0.001). Significant decreases in peribronchial thickening (p=0.005), bronchial mucus (p=0.005) and bronchiolar mucus (p=0.007) volumes were measured in patients with lumacaftor/ivacaftor. Conversely, bronchiectasis (p=0.002) and peribronchial thickening (p=0.008) volumes increased in patients without lumacaftor/ivacaftor. The reproducibility was almost perfect (Dice >0.99).Conclusion: AI allows fully automated volumetric quantification of CF-related modifications over an entire lung. The novel scoring system could provide a robust disease outcome in the era of effective CF transmembrane conductance regulator modulator therapy. | |
dc.description.sponsorship | Translational Research and Advanced Imaging Laboratory - ANR-10-LABX-0057 | |
dc.language.iso | en | |
dc.publisher | European Respiratory Society | |
dc.title.en | Artificial intelligence in CT for quantifying lung changes in the era of CFTR modulators | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1183/13993003.00844-2021 | |
dc.subject.hal | Sciences du Vivant [q-bio]/Ingénierie biomédicale/Imagerie | |
dc.subject.hal | Sciences du Vivant [q-bio]/Médecine humaine et pathologie/Pneumologie et système respiratoire | |
bordeaux.journal | European Respiratory Journal | |
bordeaux.page | 2100844 | |
bordeaux.volume | 59 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03453536 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03453536v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=European%20Respiratory%20Journal&rft.date=2022&rft.volume=59&rft.spage=2100844&rft.epage=2100844&rft.eissn=0903-1936&rft.issn=0903-1936&rft.au=DOURNES,%20Gael&HALL,%20Chase&WILLMERING,%20Matthew&BRODY,%20Alan&MACEY,%20Julie&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |