Classification of discrete weak KAM solutions on linearly repetitive quasi-periodic sets
hal.structure.identifier | Instituto de Matemática, Estatística e Computação Científica [Brésil] [IMECC] | |
dc.contributor.author | GARIBALDI, Eduardo | |
hal.structure.identifier | Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA] | |
dc.contributor.author | PETITE, Samuel | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | THIEULLEN, Philippe | |
dc.date.accessioned | 2024-04-04T02:33:25Z | |
dc.date.available | 2024-04-04T02:33:25Z | |
dc.date.issued | 2023-08-24 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190477 | |
dc.description.abstractEn | In discrete schemes, weak KAM solutions may be interpreted as approximations of correctors for some Hamilton-Jacobi equations in the periodic setting. It is known that correctors may not exist in the almost periodic setting. We show the existence of discrete weak KAM solutions for non-degenerate and weakly twist interactions in general. Furthermore, assuming equivariance with respect to a linearly repetitive quasi-periodic set, we completely classify all possible types of weak KAM solutions. | |
dc.description.sponsorship | A l'intérieur de l'entropie nulle - ANR-22-CE40-0011 | |
dc.language.iso | en | |
dc.title.en | Classification of discrete weak KAM solutions on linearly repetitive quasi-periodic sets | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math] | |
dc.identifier.arxiv | 2308.13058 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-04189059 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-04189059v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2023-08-24&rft.au=GARIBALDI,%20Eduardo&PETITE,%20Samuel&THIEULLEN,%20Philippe&rft.genre=preprint |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |