Fully well-balanced entropy controlled discontinuous Galerkin spectral element method for shallow water flows: global flux quadrature and cell entropy correction
RICCHIUTO, Mario
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
RICCHIUTO, Mario
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
< Réduire
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Computational Physics. 2024-02, vol. 498, p. 112673
Elsevier
Résumé en anglais
We present a novel approach for solving the shallow water equations using a discontinuous Galerkin spectral element method. The method we propose has three main features. First, it enjoys a discrete wellbalanced property, ...Lire la suite >
We present a novel approach for solving the shallow water equations using a discontinuous Galerkin spectral element method. The method we propose has three main features. First, it enjoys a discrete wellbalanced property, in a spirit similar to the one of e.g. [20]. As in the reference, our scheme does not require any a-priori knowledge of the steady equilibrium, moreover it does not involve the explicit solution of any local auxiliary problem to approximate such equilibrium. The scheme is also arbitrarily high order, and verifies a continuous in time cell entropy equality. The latter becomes an inequality as soon as additional dissipation is added to the method. The method is constructed starting from a global flux approach in which an additional flux term is constructed as the primitive of the source. We show that, in the context of nodal spectral finite elements, this can be translated into a simple modification of the integral of the source term. We prove that, when using Gauss-Lobatto nodal finite elements this modified integration is equivalent at steady state to a high order Gauss collocation method applied to an ODE for the flux. This method is superconvergent at the collocation points, thus providing a discrete well-balanced property very similar in spirit to the one proposed in [20], albeit not needing the explicit computation of a local approximation of the steady state. To control the entropy production, we introduce artificial viscosity corrections at the cell level and incorporate them into the scheme. We provide theoretical and numerical characterizations of the accuracy and equilibrium preservation of these corrections. Through extensive numerical benchmarking, we validate our theoretical predictions, with considerable improvements in accuracy for steady states, as well as enhanced robustness for more complex scenarios.< Réduire
Mots clés en anglais
balance laws
general steady equilibria
discontinuous Galerkin spectral element
fully well-balancing
entropy conservation
Gauss-Lobatto integration
Origine
Importé de halUnités de recherche