Registration-based model reduction of parameterized PDEs with spatio-parameter adaptivity
BARRAL, Nicolas
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
TIFOUTI, Ishak
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
BARRAL, Nicolas
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
TIFOUTI, Ishak
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
< Réduire
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Computational Physics. 2024-02, vol. 499, p. 112727
Elsevier
Résumé en anglais
We propose an automated nonlinear model reduction and mesh adaptation framework for rapid and reliable solution of parameterized advection-dominated problems, with emphasis on compressible flows. The key features of our ...Lire la suite >
We propose an automated nonlinear model reduction and mesh adaptation framework for rapid and reliable solution of parameterized advection-dominated problems, with emphasis on compressible flows. The key features of our approach are threefold: (i) a metric-based mesh adaptation technique to generate an accurate mesh for a range of parameters, (ii) a general (i.e., independent of the underlying equations) registration procedure for the computation of a mapping Φ that tracks moving features of the solution field, and (iii) an hyper-reduced least-square Petrov-Galerkin reduced-order model for the rapid and reliable estimation of the mapped solution. We discuss a general paradigm — which mimics the refinement loop considered in mesh adaptation — to simultaneously construct the high-fidelity and the reduced-order approximations, and we discuss actionable strategies to accelerate the offline phase. We present extensive numerical investigations for a quasi-1D nozzle problem and for a two-dimensional inviscid flow past a Gaussian bump to display the many features of the methodology and to assess the performance for problems with discontinuous solutions.< Réduire
Mots clés en anglais
parameterized conservation laws
model order reduction
mesh adaptation
registration methods
nonlinear approximations
Projet Européen
Accurate Roms for Industrial Applications
Origine
Importé de halUnités de recherche