Strong annihilating pairs for the Fourier-Bessel transform
hal.structure.identifier | Mathématiques - Analyse, Probabilités, Modélisation - Orléans [MAPMO] | |
hal.structure.identifier | Analyse harmonique et fonctions spéciales | |
dc.contributor.author | GHOBBER, Saifallah | |
hal.structure.identifier | Mathématiques - Analyse, Probabilités, Modélisation - Orléans [MAPMO] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | JAMING, Philippe | |
dc.date.accessioned | 2024-04-04T02:28:46Z | |
dc.date.available | 2024-04-04T02:28:46Z | |
dc.date.created | 2010 | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190120 | |
dc.description.abstractEn | The aim of this paper is to prove two new uncertainty principles for the Fourier-Bessel transform (or Hankel transform). The first of these results is an extension of a result of Amrein-Berthier-Benedicks, it states that a non zero function $f$ and its Fourier-Bessel transform $\mathcal{F}_\alpha (f)$ cannot both have support of finite measure. The second result states that the supports of $f$ and $\mathcal{F}_\alpha (f)$ cannot both be $(\eps,\alpha)$-thin, this extending a result of Shubin-Vakilian-Wolff. As a side result we prove that the dilation of a $\cc_0$-function are linearly independent. We also extend Faris's local uncertainty principle to the Fourier-Bessel transform. | |
dc.description.sponsorship | Analyse Harmonique et Problèmes Inverses - ANR-07-BLAN-0247 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Fourier-Bessel transform | |
dc.subject.en | Hankel transform | |
dc.subject.en | uncertainty principle | |
dc.subject.en | annihilating pairs | |
dc.title.en | Strong annihilating pairs for the Fourier-Bessel transform | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1080/10652469.2012.708868 | |
dc.subject.hal | Mathématiques [math]/Analyse classique [math.CA] | |
dc.identifier.arxiv | 1009.1710 | |
bordeaux.journal | Journal of Mathematical Analysis and Applications | |
bordeaux.page | 501-515 | |
bordeaux.volume | 377 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00516289 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00516289v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Mathematical%20Analysis%20and%20Applications&rft.date=2011&rft.volume=377&rft.spage=501-515&rft.epage=501-515&rft.eissn=0022-247X&rft.issn=0022-247X&rft.au=GHOBBER,%20Saifallah&JAMING,%20Philippe&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |