Show simple item record

hal.structure.identifierMathématiques - Analyse, Probabilités, Modélisation - Orléans [MAPMO]
hal.structure.identifierAnalyse harmonique et fonctions spéciales
dc.contributor.authorGHOBBER, Saifallah
hal.structure.identifierMathématiques - Analyse, Probabilités, Modélisation - Orléans [MAPMO]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorJAMING, Philippe
dc.date.accessioned2024-04-04T02:28:46Z
dc.date.available2024-04-04T02:28:46Z
dc.date.created2010
dc.date.issued2011
dc.identifier.issn0022-247X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190120
dc.description.abstractEnThe aim of this paper is to prove two new uncertainty principles for the Fourier-Bessel transform (or Hankel transform). The first of these results is an extension of a result of Amrein-Berthier-Benedicks, it states that a non zero function $f$ and its Fourier-Bessel transform $\mathcal{F}_\alpha (f)$ cannot both have support of finite measure. The second result states that the supports of $f$ and $\mathcal{F}_\alpha (f)$ cannot both be $(\eps,\alpha)$-thin, this extending a result of Shubin-Vakilian-Wolff. As a side result we prove that the dilation of a $\cc_0$-function are linearly independent. We also extend Faris's local uncertainty principle to the Fourier-Bessel transform.
dc.description.sponsorshipAnalyse Harmonique et Problèmes Inverses - ANR-07-BLAN-0247
dc.language.isoen
dc.publisherElsevier
dc.subject.enFourier-Bessel transform
dc.subject.enHankel transform
dc.subject.enuncertainty principle
dc.subject.enannihilating pairs
dc.title.enStrong annihilating pairs for the Fourier-Bessel transform
dc.typeArticle de revue
dc.identifier.doi10.1080/10652469.2012.708868
dc.subject.halMathématiques [math]/Analyse classique [math.CA]
dc.identifier.arxiv1009.1710
bordeaux.journalJournal of Mathematical Analysis and Applications
bordeaux.page501-515
bordeaux.volume377
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00516289
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00516289v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Mathematical%20Analysis%20and%20Applications&rft.date=2011&rft.volume=377&rft.spage=501-515&rft.epage=501-515&rft.eissn=0022-247X&rft.issn=0022-247X&rft.au=GHOBBER,%20Saifallah&JAMING,%20Philippe&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record