Afficher la notice abrégée

hal.structure.identifierAnalysis and Problems of Inverse type in Control and Signal processing [APICS]
dc.contributor.authorBARATCHART, Laurent
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorKUPIN, Stanislas
hal.structure.identifierSignal Processing Technology [Taiwan]
dc.contributor.authorLUNOT, V.
hal.structure.identifierAnalysis and Problems of Inverse type in Control and Signal processing [APICS]
dc.contributor.authorOLIVI, Martine
dc.date.accessioned2024-04-04T02:23:37Z
dc.date.available2024-04-04T02:23:37Z
dc.date.created2010-02-11
dc.date.issued2011-09
dc.identifier.issn0021-7670
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189750
dc.description.abstractEnClassical Schur analysis is intimately connected to the theory of orthogonal polynomials on the circle [Simon, 2005]. We investigate here the connection between multipoint Schur analysis and orthogonal rational functions. Specifically, we study the convergence of the Wall rational functions via the development of a rational analogue to the Szeg\H o theory, in the case where the interpolation points may accumulate on the unit circle. This leads us to generalize results from [Khrushchev,2001], [Bultheel et al., 1999], and yields asymptotics of a novel type.
dc.language.isoen
dc.publisherSpringer
dc.title.enMultipoint Schur algorithm and orthogonal rational functions: convergence properties, I
dc.typeArticle de revue
dc.identifier.doi10.1007/s11854-011-0016-9
dc.subject.halMathématiques [math]/Analyse classique [math.CA]
dc.subject.halMathématiques [math]/Variables complexes [math.CV]
dc.identifier.arxiv0812.2050
bordeaux.journalJournal d'analyse mathématique
bordeaux.page207-253
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00764820
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00764820v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique&rft.date=2011-09&rft.issue=1&rft.spage=207-253&rft.epage=207-253&rft.eissn=0021-7670&rft.issn=0021-7670&rft.au=BARATCHART,%20Laurent&KUPIN,%20Stanislas&LUNOT,%20V.&OLIVI,%20Martine&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée