Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
dc.contributor.authorPAGE, Aurel
dc.date.accessioned2024-04-04T02:21:28Z
dc.date.available2024-04-04T02:21:28Z
dc.date.created2013-09-20
dc.date.issued2015
dc.identifier.issn0025-5718
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189576
dc.description.abstractEnArithmetic Kleinian groups are arithmetic lattices in PSL_2(C). We present an algorithm which, given such a group Gamma, returns a fundamental domain and a finite presentation for Gamma with a computable isomorphism.
dc.language.isoen
dc.publisherAmerican Mathematical Society
dc.subject.enhyperbolic geometry
dc.subject.enfundamental domain
dc.subject.enarithmetic group
dc.subject.encomputational number theory
dc.subject.enquaternion algebra
dc.title.enComputing arithmetic Kleinian groups
dc.typeArticle de revue
dc.identifier.doi10.1090/S0025-5718-2015-02939-1
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.subject.halInformatique [cs]/Calcul formel [cs.SC]
dc.identifier.arxiv1206.0087
dc.description.sponsorshipEuropeAlgorithmic Number Theory in Computer Science
bordeaux.journalMathematics of Computation
bordeaux.page2361-2390
bordeaux.volume84
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue295
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00703043
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00703043v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematics%20of%20Computation&rft.date=2015&rft.volume=84&rft.issue=295&rft.spage=2361-2390&rft.epage=2361-2390&rft.eissn=0025-5718&rft.issn=0025-5718&rft.au=PAGE,%20Aurel&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record