On quantitative bounds on eigenvalues of a complex perturbation of a Dirac operator
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | DUBUISSON, Clément | |
dc.date.accessioned | 2024-04-04T02:20:51Z | |
dc.date.available | 2024-04-04T02:20:51Z | |
dc.date.created | 2013-05-22 | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0378-620X | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189524 | |
dc.description.abstractEn | We prove a Lieb-Thirring type inequality for a complex perturbation of a d-dimensional massive Dirac operator $D_m, m\geq 0$ whose spectrum is $]-\infty , -m]\cup[m , +\infty[$. The difficulty of the study is that the unperturbed operator is not bounded from below in this case, and, to overcome it, we use the methods of complex function theory. The methods of the article also give similar results for complex perturbations of the Klein-Gordon operator. | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.subject.en | Dirac operator | |
dc.subject.en | complex perturbation | |
dc.subject.en | discrete spectrum | |
dc.subject.en | Lieb-Thirring type inequality | |
dc.subject.en | conformal mapping | |
dc.subject.en | perturbation determinant | |
dc.title.en | On quantitative bounds on eigenvalues of a complex perturbation of a Dirac operator | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/s00020-013-2112-y | |
dc.subject.hal | Mathématiques [math]/Théorie spectrale [math.SP] | |
dc.identifier.arxiv | 1305.5214 | |
bordeaux.journal | Integral Equations and Operator Theory | |
bordeaux.page | 249-269 | |
bordeaux.volume | 78 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 2 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00825047 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00825047v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Integral%20Equations%20and%20Operator%20Theory&rft.date=2014&rft.volume=78&rft.issue=2&rft.spage=249-269&rft.epage=249-269&rft.eissn=0378-620X&rft.issn=0378-620X&rft.au=DUBUISSON,%20Cl%C3%A9ment&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |