Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDUBUISSON, Clément
dc.date.accessioned2024-04-04T02:20:51Z
dc.date.available2024-04-04T02:20:51Z
dc.date.created2013-05-22
dc.date.issued2014
dc.identifier.issn0378-620X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189524
dc.description.abstractEnWe prove a Lieb-Thirring type inequality for a complex perturbation of a d-dimensional massive Dirac operator $D_m, m\geq 0$ whose spectrum is $]-\infty , -m]\cup[m , +\infty[$. The difficulty of the study is that the unperturbed operator is not bounded from below in this case, and, to overcome it, we use the methods of complex function theory. The methods of the article also give similar results for complex perturbations of the Klein-Gordon operator.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enDirac operator
dc.subject.encomplex perturbation
dc.subject.endiscrete spectrum
dc.subject.enLieb-Thirring type inequality
dc.subject.enconformal mapping
dc.subject.enperturbation determinant
dc.title.enOn quantitative bounds on eigenvalues of a complex perturbation of a Dirac operator
dc.typeArticle de revue
dc.identifier.doi10.1007/s00020-013-2112-y
dc.subject.halMathématiques [math]/Théorie spectrale [math.SP]
dc.identifier.arxiv1305.5214
bordeaux.journalIntegral Equations and Operator Theory
bordeaux.page249-269
bordeaux.volume78
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00825047
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00825047v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Integral%20Equations%20and%20Operator%20Theory&rft.date=2014&rft.volume=78&rft.issue=2&rft.spage=249-269&rft.epage=249-269&rft.eissn=0378-620X&rft.issn=0378-620X&rft.au=DUBUISSON,%20Cl%C3%A9ment&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée