On quantitative bounds on eigenvalues of a complex perturbation of a Dirac operator
Langue
en
Article de revue
Ce document a été publié dans
Integral Equations and Operator Theory. 2014, vol. 78, n° 2, p. 249-269
Springer Verlag
Résumé en anglais
We prove a Lieb-Thirring type inequality for a complex perturbation of a d-dimensional massive Dirac operator $D_m, m\geq 0$ whose spectrum is $]-\infty , -m]\cup[m , +\infty[$. The difficulty of the study is that the ...Lire la suite >
We prove a Lieb-Thirring type inequality for a complex perturbation of a d-dimensional massive Dirac operator $D_m, m\geq 0$ whose spectrum is $]-\infty , -m]\cup[m , +\infty[$. The difficulty of the study is that the unperturbed operator is not bounded from below in this case, and, to overcome it, we use the methods of complex function theory. The methods of the article also give similar results for complex perturbations of the Klein-Gordon operator.< Réduire
Mots clés en anglais
Dirac operator
complex perturbation
discrete spectrum
Lieb-Thirring type inequality
conformal mapping
perturbation determinant
Origine
Importé de halUnités de recherche