On quantitative bounds on eigenvalues of a complex perturbation of a Dirac operator
Idioma
en
Article de revue
Este ítem está publicado en
Integral Equations and Operator Theory. 2014, vol. 78, n° 2, p. 249-269
Springer Verlag
Resumen en inglés
We prove a Lieb-Thirring type inequality for a complex perturbation of a d-dimensional massive Dirac operator $D_m, m\geq 0$ whose spectrum is $]-\infty , -m]\cup[m , +\infty[$. The difficulty of the study is that the ...Leer más >
We prove a Lieb-Thirring type inequality for a complex perturbation of a d-dimensional massive Dirac operator $D_m, m\geq 0$ whose spectrum is $]-\infty , -m]\cup[m , +\infty[$. The difficulty of the study is that the unperturbed operator is not bounded from below in this case, and, to overcome it, we use the methods of complex function theory. The methods of the article also give similar results for complex perturbations of the Klein-Gordon operator.< Leer menos
Palabras clave en inglés
Dirac operator
complex perturbation
discrete spectrum
Lieb-Thirring type inequality
conformal mapping
perturbation determinant
Orígen
Importado de HalCentros de investigación