Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorOUHABAZ, El Maati
dc.date.accessioned2024-04-04T02:17:05Z
dc.date.available2024-04-04T02:17:05Z
dc.date.created2009
dc.date.issued2010
dc.identifier.issn0022-0396
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189196
dc.description.abstractEnIn this paper we study the maximal regularity property for nonautonomous evolution equations ∂tu(t)+ A(t)u(t) = f (t), u(0) = 0. If the equation is considered on a Hilbert space H and the operators A(t) are defined by sesquilinear forms a(t, *,*) we prove the maximal regularity under a Hölder continuity assumption of t → a(t, *,*). In the non-Hilbert space situation we focus on Schrödinger type operators A(t) := − + m(t, *) and prove Lp − Lq estimates for a wide class of time and space dependent
dc.language.isoen
dc.publisherElsevier
dc.subject.enMaximal Lp − Lq regularity Non-autonomous Cauchy problems Schrödinger operators
dc.title.enMaximal regularity for non-autonomous Schrödinger type equations
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jde.2009.10.004
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalJournal of Differential Equations
bordeaux.page1668-1683
bordeaux.volume248
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00998109
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00998109v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Differential%20Equations&rft.date=2010&rft.volume=248&rft.spage=1668-1683&rft.epage=1668-1683&rft.eissn=0022-0396&rft.issn=0022-0396&rft.au=OUHABAZ,%20El%20Maati&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée