Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorOUHABAZ, El Maati
dc.date.accessioned2024-04-04T02:17:05Z
dc.date.available2024-04-04T02:17:05Z
dc.date.created2007
dc.date.issued2009
dc.identifier.issn0002-9947
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189195
dc.description.abstractEnWe prove a spectral multiplier theorem for non-self-adjoint operators. More precisely, we consider non-self-adjoint operators A : D(A) ⊂ L2 → L2 having numerical range in a sector Σ(w) of angle w, and whose heat kernel satisfies a Gaussian upper bound. We prove that for every bounded holomorphic function f on Σ(w), f(A) acts on Lp with Lp−norm estimated by the behavior of a finite number of derivatives of f on the boundary of Σ(w).
dc.language.isoen
dc.publisherAmerican Mathematical Society
dc.subject.enSpectral multipliers
dc.subject.enharmonic analysis
dc.subject.enfunctional calculus
dc.title.enA Spectral Multiplier Theorem for Non-Self-Adjoint Operators
dc.typeArticle de revue
dc.identifier.doi10.1090/S0002-9947-09-04754-0
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]/Analyse fonctionnelle [math.FA]
bordeaux.journalTransactions of the American Mathematical Society
bordeaux.page6567-6582
bordeaux.volume361
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue12
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00998115
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00998115v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.date=2009&rft.volume=361&rft.issue=12&rft.spage=6567-6582&rft.epage=6567-6582&rft.eissn=0002-9947&rft.issn=0002-9947&rft.au=OUHABAZ,%20El%20Maati&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record