Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorOUHABAZ, El Maati
dc.date.accessioned2024-04-04T02:16:59Z
dc.date.available2024-04-04T02:16:59Z
dc.date.created2010
dc.date.issued2013
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189187
dc.description.abstractEnWe consider degenerate differential operators of the type A = − d k,j=1 ∂k(akj∂j) on L2(Rd) with real symmetric bounded measurable coefficients. Given a function χ ∈ C ∞ b (Rd) (respectively, a bounded Lipschitz domain Ω), suppose that (akj) ≥ μ > 0 a.e. on supp χ (respectively, a.e. on Ω). We prove a spectral multiplier type result: if F : [0,∞) → C is such that supt>0 ϕ(.)F(t.) Cs < ∞ for some nontrivial function ϕ ∈ C ∞ c (0,∞) and some s > d/2 then MχF(I + A)Mχ is weak type (1, 1) (respectively, PΩF(I +A)PΩ is weak type (1, 1)). We also prove boundedness on Lp for all p ∈ (1, 2] of the partial Riesz transforms Mχ∇(I + A) −1/2Mχ. The proofs are based on a criterion for a singular integral operator to be weak type (1, 1).
dc.language.isoen
dc.typeArticle de revue
dc.identifier.doi10.4171/rmi/735
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]/Analyse fonctionnelle [math.FA]
dc.identifier.arxiv1202.2136
bordeaux.journalRevista Math. Iberoamericana
bordeaux.page691-713
bordeaux.volume29
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00998578
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00998578v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Revista%20Math.%20Iberoamericana&amp;rft.date=2013&amp;rft.volume=29&amp;rft.issue=2&amp;rft.spage=691-713&amp;rft.epage=691-713&amp;rft.au=OUHABAZ,%20El%20Maati&amp;rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record