Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorJUMABEKOVA, Ainagul
dc.contributor.authorBERGER, Julien
dc.contributor.authorHUBERT, Tessa
dc.contributor.authorDUGUE, Antoine
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorVOGT WU, Tingting
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorRECHT, Thomas
IDREF: 202411974
dc.contributor.authorINARD, Christian
dc.date.accessioned2023-11-29T16:39:08Z
dc.date.available2023-11-29T16:39:08Z
dc.date.issued2023-10
dc.identifier.issn0378-7788en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/186245
dc.description.abstractEnIn this article, a framework to model and predict the energy performance of an adaptive facade is proposed. A case study of a bio-inspired concept, called Stegos, is considered. This dynamic system manages thermal transfers through the facade by varying the color and position of rotating flaps. A prototype of this concept that was incorporated into a test bench was tested at a 1:1 scale and in real weather conditions, while the flaps color and angle were changed manually. The objective of the article was twofold. First, using measurements, a reduced order model was identified by applying the Modal Identification Method (MIM). The training phase was divided into four consecutive steps. At each step, one day of corresponding experimental data is used. The reduced model provided reliable predictions of heat flux values induced by the prototype when the flaps were in a closed or fully open state. Second, a Model Predictive Control (MPC) was implemented to indicate the optimal configurations of the prototype for better energy efficiency. Case study used measurements of one week in winter and determined the color and angle of the flaps, which corresponded to the optimal solution. Closed black flaps during a day and open flaps during a night contributed to maximum heat gain.
dc.language.isoENen_US
dc.subject.enBio-inspired skin facade
dc.subject.enModal identification method (MIM)
dc.subject.enModel predictive control (MPC)
dc.subject.enData-driven approach
dc.title.enA state-space model to control an adaptive facade prototype using data-driven techniques
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.enbuild.2023.113391en_US
dc.subject.halSciences de l'ingénieur [physics]en_US
bordeaux.journalEnergy and Buildingsen_US
bordeaux.page113391en_US
bordeaux.volume296en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-04273114
hal.version1
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Energy%20and%20Buildings&rft.date=2023-10&rft.volume=296&rft.spage=113391&rft.epage=113391&rft.eissn=0378-7788&rft.issn=0378-7788&rft.au=JUMABEKOVA,%20Ainagul&BERGER,%20Julien&HUBERT,%20Tessa&DUGUE,%20Antoine&VOGT%20WU,%20Tingting&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record