Conditions of emergence of the Sooty Bark Disease and aerobiology of Cryptostroma corticale in Europe
MULLER, Elodie
Interactions Arbres-Microorganismes [IAM]
Unité de Mycologie [USC INRAE LSV-mycologie]
Voir plus >
Interactions Arbres-Microorganismes [IAM]
Unité de Mycologie [USC INRAE LSV-mycologie]
MULLER, Elodie
Interactions Arbres-Microorganismes [IAM]
Unité de Mycologie [USC INRAE LSV-mycologie]
Interactions Arbres-Microorganismes [IAM]
Unité de Mycologie [USC INRAE LSV-mycologie]
MIGLIORINI, Duccio
National Research Council of Italy | Consiglio Nazionale delle Ricerche [CNR]
The University of Western Australia [UWA]
< Réduire
National Research Council of Italy | Consiglio Nazionale delle Ricerche [CNR]
The University of Western Australia [UWA]
Langue
en
Article de revue
Ce document a été publié dans
NeoBiota. 2023-05-18, vol. 84, p. 319 - 347
Pensoft Publishers
Résumé en anglais
The sooty bark disease (SBD) is an emerging disease affecting sycamore maple trees (Acer pseudoplatanus) in Europe. Cryptostroma corticale, the causal agent, putatively native to eastern North America, can be also pathogenic ...Lire la suite >
The sooty bark disease (SBD) is an emerging disease affecting sycamore maple trees (Acer pseudoplatanus) in Europe. Cryptostroma corticale, the causal agent, putatively native to eastern North America, can be also pathogenic for humans causing pneumonitis. It was first detected in 1945 in Europe, with markedly increasing reports since 2000. Pathogen development appears to be linked to heat waves and drought episodes. Here, we analyse the conditions of the SBD emergence in Europe based on a three-decadal timeseries data set. We also assess the suitability of aerobiological samples using a species-specific quantitative PCR assay to inform the epidemiology of C. corticale, through a regional study in France comparing twoyear aerobiological and epidemiological data, and a continental study including 12 air samplers from six countries (Czechia, France, Italy, Portugal, Sweden and Switzerland). We found that an accumulated water deficit in spring and summer lower than-132 mm correlates with SBD outbreaks. Our results suggest that C. corticale is an efficient airborne pathogen which can disperse its conidia as far as 310 km from the site of the closest disease outbreak. Aerobiology of C. corticale followed the SBD distribution in Europe. Pathogen detection was high in countries within the host native area and with longer disease presence, such as France, Switzerland and Czech Republic, and sporadic in Italy, where the pathogen was reported just once. The pathogen was absent in samples from Portugal and Sweden, where the disease has not been reported yet. We conclude that aerobiological surveillance can inform the spatial distribution of the SBD, and contribute to early detection in pathogen-free countries.< Réduire
Mots clés en anglais
Acer pseudoplatanus
aerobiology
airborne fungal spores
climate change
drought-induced forest disease
heat wave
invasive pathogen
maple bark disease
quantitative species-specific PCR
Projet Européen
HOlistic Management of Emerging forest pests and Diseases,
Project ANR
Recherches Avancées sur l'Arbre et les Ecosytèmes Forestiers
Origine
Importé de halUnités de recherche