Differences between tree stem CO 2 efflux and O 2 influx rates cannot be explained by internal CO 2 transport or storage in large beech trees
HELM, Juliane
Max Planck Institute for Biogeochemistry [MPI-BGC]
Université de Bâle = University of Basel = Basel Universität [Unibas]
Max Planck Institute for Biogeochemistry [MPI-BGC]
Université de Bâle = University of Basel = Basel Universität [Unibas]
SALOMÓN, Roberto
Universidad Politécnica de Madrid [UPM]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Voir plus >
Universidad Politécnica de Madrid [UPM]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
HELM, Juliane
Max Planck Institute for Biogeochemistry [MPI-BGC]
Université de Bâle = University of Basel = Basel Universität [Unibas]
Max Planck Institute for Biogeochemistry [MPI-BGC]
Université de Bâle = University of Basel = Basel Universität [Unibas]
SALOMÓN, Roberto
Universidad Politécnica de Madrid [UPM]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Universidad Politécnica de Madrid [UPM]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
MUHR, Jan
Max Planck Institute for Biogeochemistry [MPI-BGC]
Georg-August-University = Georg-August-Universität Göttingen
< Réduire
Max Planck Institute for Biogeochemistry [MPI-BGC]
Georg-August-University = Georg-August-Universität Göttingen
Langue
en
Article de revue
Ce document a été publié dans
Plant, Cell and Environment. 2023-05-23, vol. Online first
Wiley
Résumé en anglais
Tree stem respiration (R S) is a substantial component of the forest carbon balance. The mass balance approach uses stem CO 2 efflux and internal xylem fluxes to sum up R S , while the oxygen-based method assumes O 2 influx ...Lire la suite >
Tree stem respiration (R S) is a substantial component of the forest carbon balance. The mass balance approach uses stem CO 2 efflux and internal xylem fluxes to sum up R S , while the oxygen-based method assumes O 2 influx as a proxy of R S. So far, both approaches have yielded inconsistent results regarding the fate of respired CO 2 in tree stems, a major challenge for quantifying forest carbon dynamics. We collected a data set of CO 2 efflux, O 2 influx, xylem CO 2 concentration, sap flow, sap pH, stem temperature, nonstructural carbohydrates concentration and potential phosphoenolpyruvate carboxylase (PEPC) capacity on mature beech trees to identify the sources of differences between approaches. The ratio of CO 2 efflux to O 2 influx was consistently below unity (0.7) along a 3-m vertical gradient, but internal fluxes did not bridge the gap between influx and efflux, nor did we find evidence for changes in respiratory substrate use. PEPC capacity was comparable with that previously reported in green current-year twigs. Although we could not reconcile differences between approaches, results shed light on the uncertain fate of CO 2 respired by parenchyma cells across the sapwood. Unexpected high values of PEPC< Réduire
Mots clés en anglais
CO2/O2 ratio
carbon dioxide transport
mature trees
oxygen consumption
temperate forest
vertical stem gradient.
Projet Européen
682512-OXYFLUX
Origine
Importé de halUnités de recherche