Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorDE RAUTLIN DE LA ROY, Enguerrand
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorRECHT, Thomas
IDREF: 202411974
dc.contributor.authorZEMMARI, Akka
IDREF: 157264491
dc.contributor.authorBOURREAU, Pierre
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorMORA, Laurent
IDREF: 077660870
dc.date.accessioned2023-10-27T07:41:42Z
dc.date.available2023-10-27T07:41:42Z
dc.date.issued2023-03-01
dc.identifier.issn0360-1323en_US
dc.identifier.urioai:crossref.org:10.1016/j.buildenv.2023.110019
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/184548
dc.description.abstractEnThe increasing use of monitoring systems such as Building Management System (BMS) or connected devices bring the opportunity to better evaluate, model or control both occupants’ comfort and energy consumed by an operated building thanks to the consequent amount of data provided (e.g., air temperature, CO2 concentration, electricity consumption). Occupants’ behavior and more specifically window-openings affect both occupants’ thermal comfort and building energy consumption and are therefore key components to consider. This paper presents a comparison of machine learning models applied on window-openings detection during the heating season such as: Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Random Forest Classifier (RFC) and two Recurrent Neural Network (RNN), namely, Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). While some applications of Artificial Intelligence (AI) methods applied on window-openings detection exist in the literature, this Submitted to Building and Environment January 2023 study proposes a detailed comparison of the main methods and focuses on the impact of feature engineering process considering four different data transformations based on field expertise and more than 800 different combinations built on six indoor and outdoor measurements. Results show that some of the proposed transformations and combinations positively impact all models performances. The best performances on window-openings detection are attained by using indoor temperature and CO2 concentration on RNN models with an average F1-score of 0.78 while LDA, SVM and RFC models tend to provide satisfying but lower performance around 0.70-72. In addition, by using the right transformation, significant results can be achieved by detecting up to 84-88 % of window-opening times with the sole use of indoor air temperature measurements.
dc.language.isoENen_US
dc.sourcecrossref
dc.subject.enDeep learning
dc.subject.enWindow-opening
dc.subject.enReccurent neural network
dc.subject.enSupport vector machine
dc.subject.enRandom forest
dc.title.enDeep learning models for building window-openings detection in heating season
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.buildenv.2023.110019en_US
dc.subject.halSciences de l'ingénieur [physics]
bordeaux.journalBuilding and Environmenten_US
bordeaux.page110019en_US
bordeaux.volume231en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.identifierhal-04432021
hal.version1
hal.date.transferred2024-02-01T13:43:44Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
workflow.import.sourcedissemin
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Building%20and%20Environment&rft.date=2023-03-01&rft.volume=231&rft.spage=110019&rft.epage=110019&rft.eissn=0360-1323&rft.issn=0360-1323&rft.au=DE%20RAUTLIN%20DE%20LA%20ROY,%20Enguerrand&RECHT,%20Thomas&ZEMMARI,%20Akka&BOURREAU,%20Pierre&MORA,%20Laurent&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée