Show simple item record

hal.structure.identifierUniversité de Tunis El Manar, Faculté des Sciences de Tunis, 2092 El Manar & Ecole Nationale d'Ingénieurs de Tunis, ENIT-LAMSIN, B.P. 37, 1002 Tunis, Tunisia.
dc.contributor.authorDEHMAN, Belhassen
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorERVEDOZA, Sylvain
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorTHABOUTI, Lotfi
dc.date.created2023-06-28
dc.date.issued2023-06-28
dc.description.abstractEnThe aim of this work is to prove global $L^p$ Carleman estimates for the Laplace operator in dimension $d \geq 3$. Our strategy relies on precise Carleman estimates in strips, and a suitable gluing of local and boundary estimates obtained through a change of variables. The delicate point and most of the work thus consists in proving Carleman estimates in the strip with a linear weight function for a second order operator with coefficients depending linearly on the normal variable. This is done by constructing an explicit parametrix for the conjugated operator, which is estimated through the use of Stein Tomas restriction theorems. As an application, we deduce quantified versions of the unique continuation property for solutions of $\Delta u = V u + W_1 \cdot \nabla u + \div(W_2 u)$ in terms of the norms of $V$ in $L^{q_0}(\Omega)$, of $W_1$ in $L^{q_1}(\Omega)$ and of $W_2$ in $L^{q_2}(\Omega)$ for $q_0 \in (d/2, \infty]$ and $q_1$ and $q_2$ satisfying either $q_1, \, q_2 > (3d-2)/2$ and $1/q_1 + 1/q_2< 4 (1-1/d)/(3d-2)$, or $q_1, \, q_2 > 3d/2$.
dc.description.sponsorshipNouvelles directions en contrôle et stabilisation: Contraintes et termes non-locaux - ANR-20-CE40-0009
dc.language.isoen
dc.rights.urihttp://hal.archives-ouvertes.fr/licences/copyright/
dc.subject.enCarleman estimates
dc.subject.enboundary value problem
dc.subject.enelliptic equations
dc.subject.enFourier restriction theorems
dc.titleEstimations de Carleman $L^p$ pour des problèmes au bord elliptiques et applications à la quantification du prolongement unique
dc.title.en$L^p$ Carleman estimates for elliptic boundary value problems and applications to the quantification of unique continuation
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]
hal.identifierhal-04148255
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04148255v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.title=Estimations%20de%20Carleman%20$L%5Ep$%20pour%20des%20probl%C3%A8mes%20au%20bord%20elliptiques%20et%20applications%20%C3%A0%20la%20quantification%20du%20prolongement%20uni&amp;rft.atitle=Estimations%20de%20Carleman%20$L%5Ep$%20pour%20des%20probl%C3%A8mes%20au%20bord%20elliptiques%20et%20applications%20%C3%A0%20la%20quantification%20du%20prolongement%20un&amp;rft.date=2023-06-28&amp;rft.au=DEHMAN,%20Belhassen&amp;ERVEDOZA,%20Sylvain&amp;THABOUTI,%20Lotfi&amp;rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record