Estimations de Carleman $L^p$ pour des problèmes au bord elliptiques et applications à la quantification du prolongement unique
DEHMAN, Belhassen
Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092 El Manar & Ecole Nationale d'Ingénieurs de Tunis, ENIT-LAMSIN, B.P. 37, 1002 Tunis, Tunisia.
Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092 El Manar & Ecole Nationale d'Ingénieurs de Tunis, ENIT-LAMSIN, B.P. 37, 1002 Tunis, Tunisia.
DEHMAN, Belhassen
Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092 El Manar & Ecole Nationale d'Ingénieurs de Tunis, ENIT-LAMSIN, B.P. 37, 1002 Tunis, Tunisia.
< Réduire
Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092 El Manar & Ecole Nationale d'Ingénieurs de Tunis, ENIT-LAMSIN, B.P. 37, 1002 Tunis, Tunisia.
Langue
en
Document de travail - Pré-publication
Ce document a été publié dans
2023-06-28
Résumé en anglais
The aim of this work is to prove global $L^p$ Carleman estimates for the Laplace operator in dimension $d \geq 3$. Our strategy relies on precise Carleman estimates in strips, and a suitable gluing of local and boundary ...Lire la suite >
The aim of this work is to prove global $L^p$ Carleman estimates for the Laplace operator in dimension $d \geq 3$. Our strategy relies on precise Carleman estimates in strips, and a suitable gluing of local and boundary estimates obtained through a change of variables. The delicate point and most of the work thus consists in proving Carleman estimates in the strip with a linear weight function for a second order operator with coefficients depending linearly on the normal variable. This is done by constructing an explicit parametrix for the conjugated operator, which is estimated through the use of Stein Tomas restriction theorems. As an application, we deduce quantified versions of the unique continuation property for solutions of $\Delta u = V u + W_1 \cdot \nabla u + \div(W_2 u)$ in terms of the norms of $V$ in $L^{q_0}(\Omega)$, of $W_1$ in $L^{q_1}(\Omega)$ and of $W_2$ in $L^{q_2}(\Omega)$ for $q_0 \in (d/2, \infty]$ and $q_1$ and $q_2$ satisfying either $q_1, \, q_2 > (3d-2)/2$ and $1/q_1 + 1/q_2< 4 (1-1/d)/(3d-2)$, or $q_1, \, q_2 > 3d/2$.< Réduire
Mots clés en anglais
Carleman estimates
boundary value problem
elliptic equations
Fourier restriction theorems
Project ANR
Nouvelles directions en contrôle et stabilisation: Contraintes et termes non-locaux - ANR-20-CE40-0009
Origine
Importé de halUnités de recherche