Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorALLICHON, Marie-Charlotte
dc.contributor.authorORTIZ, Vanesa
dc.contributor.authorPOUSINHA, Paula
dc.contributor.authorANDRIANARIVELO, Andry
hal.structure.identifierNutrition et Neurobiologie intégrée [NutriNeuro]
dc.contributor.authorPETITBON, Anna
dc.contributor.authorHECK, Nicolas
hal.structure.identifierNutrition et Neurobiologie intégrée [NutriNeuro]
dc.contributor.authorTRIFILIEFF, Pierre
dc.contributor.authorBARIK, Jacques
dc.contributor.authorVANHOUTTE, Peter
dc.date.accessioned2023-06-09T07:58:54Z
dc.date.available2023-06-09T07:58:54Z
dc.date.issued2021-12-14
dc.identifier.issn1663-3563en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/182606
dc.description.abstractEnDrug addiction is defined as a compulsive pattern of drug-seeking- and taking- behavior, with recurrent episodes of abstinence and relapse, and a loss of control despite negative consequences. Addictive drugs promote reinforcement by increasing dopamine in the mesocorticolimbic system, which alters excitatory glutamate transmission within the reward circuitry, thereby hijacking reward processing. Within the reward circuitry, the striatum is a key target structure of drugs of abuse since it is at the crossroad of converging glutamate inputs from limbic, thalamic and cortical regions, encoding components of drug-associated stimuli and environment, and dopamine that mediates reward prediction error and incentive values. These signals are integrated by medium-sized spiny neurons (MSN), which receive glutamate and dopamine axons converging onto their dendritic spines. MSN primarily form two mostly distinct populations based on the expression of either DA-D1 (D1R) or DA-D2 (D2R) receptors. While a classical view is that the two MSN populations act in parallel, playing antagonistic functional roles, the picture seems much more complex. Herein, we review recent studies, based on the use of cell-type-specific manipulations, demonstrating that dopamine differentially modulates dendritic spine density and synapse formation, as well as glutamate transmission, at specific inputs projecting onto D1R-MSN and D2R-MSN to shape persistent pathological behavioral in response to drugs of abuse. We also discuss the identification of distinct molecular events underlying the detrimental interplay between dopamine and glutamate signaling in D1R-MSN and D2R-MSN and highlight the relevance of such cell-type-specific molecular studies for the development of innovative strategies with potential therapeutic value for addiction. Because drug addiction is highly prevalent in patients with other psychiatric disorders when compared to the general population, we last discuss the hypothesis that shared cellular and molecular adaptations within common circuits could explain the co-occurrence of addiction and depression. We will therefore conclude this review by examining how the nucleus accumbens (NAc) could constitute a key interface between addiction and depression.
dc.description.sponsorshipContribution des astrocytes aux ondulations hippocampiques - ANR-15-CE16-0001en_US
dc.description.sponsorshipCibler les complexes formés par les récepteurs de la dopamine et du glutamate pour atténuer les pathologies liées au stress - ANR-18-CE37-0003en_US
dc.description.sponsorshipInitiative d'excellence de l'Université de Bordeauxen_US
dc.description.sponsorshipImpact de la composition lipidique membranaire sur la transmission dopaminergique dépendante du récepteur D2 et la motivation - ANR-16-CE16-0022en_US
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enStriatum
dc.subject.enAddiction
dc.subject.enPsychiatric disorders
dc.subject.enSynaptic plasticity
dc.subject.enSignaling
dc.subject.enReceptor tracking
dc.title.enCell-Type-Specific Adaptions in Striatal Medium-Sized Spiny Neurons and Their Roles in Behavioral Responses to Drugs of Abuse
dc.typeArticle de revueen_US
dc.identifier.doi10.3389/fnsyn.2021.799274en_US
dc.subject.halSciences du Vivant [q-bio]/Neurosciences [q-bio.NC]en_US
dc.identifier.pubmed34970134en_US
bordeaux.journalFrontiers in Synaptic Neuroscienceen_US
bordeaux.volume13en_US
bordeaux.hal.laboratoriesNutriNeuro (Laboratoire de Nutrition et Neurobiologie Intégrée) - UMR 1286en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINRAEen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Frontiers%20in%20Synaptic%20Neuroscience&rft.date=2021-12-14&rft.volume=13&rft.eissn=1663-3563&rft.issn=1663-3563&rft.au=ALLICHON,%20Marie-Charlotte&ORTIZ,%20Vanesa&POUSINHA,%20Paula&ANDRIANARIVELO,%20Andry&PETITBON,%20Anna&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée