Changes in the foliar fungal community between oak leaf flushes along a latitudinal gradient in Europe
MOREIRA, Xoaquín
Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] [CSIC]
< Réduire
Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] [CSIC]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Biogeography. 2022-10-13, vol. 49, n° 12, p. 2269 - 2280
Wiley
Résumé
Aim : Leaves support a large diversity of fungi, which are known to cause plant diseases, induce plant defences or influence leaf senescence and decomposition. To advance our understanding of how foliar fungal communities ...Lire la suite >
Aim : Leaves support a large diversity of fungi, which are known to cause plant diseases, induce plant defences or influence leaf senescence and decomposition. To advance our understanding of how foliar fungal communities are structured and assembled, we assessed to what extent leaf flush and latitude can explain the within- and among-tree variation in foliar fungal communities.Location : A latitudinal gradient spanning c. 20 degrees in latitude in Europe.Taxa : The foliar fungal community associated with a foundation tree species, the pedunculate oak Quercus robur.Methods : We examined the main and interactive effects of leaf flush and latitude on the foliar fungal community by sampling 20 populations of the pedunculate oak Quercus robur across the tree's range. We used the ITS region as a target for characterization of fungal communities using DNA metabarcoding.Results : Species composition, but not species richness, differed between leaf flushes. Across the latitudinal gradient, species richness was highest in the central part of the oak's distributional range, and foliar fungal community composition shifted along the latitudinal gradient. Among fungal guilds, the relative abundance of plant pathogens and mycoparasites was lower on the first leaf flush, and the relative abundance of plant pathogens and saprotrophs decreased with latitude.Conclusions : Changes in community composition between leaf flushes and along the latitudinal gradient were mostly a result of species turnover. Overall, our findings demonstrate that leaf flush and latitude explain 5%–22% of the small- and large-scale spatial variation in the foliar fungal community on a foundation tree within the temperate region. Using space-for-time substitution, we expect that foliar fungal community structure will change with climate warming, with an increase in the abundance of plant pathogens and mycoparasites at higher latitudes, with major consequences for plant health, species interactions and ecosystem dynamics.< Réduire
Mots clés en anglais
community composition
foliar fungi
growing season
latitude
leaf flush
Quercus robur
Origine
Importé de halUnités de recherche