Quantitative absorption imaging of optically dense effective two-level systems
hal.structure.identifier | Laboratoire Photonique, Numérique et Nanosciences [LP2N] | |
dc.contributor.author | VEYRON, Romain | |
hal.structure.identifier | Laboratoire Photonique, Numérique et Nanosciences [LP2N] | |
dc.contributor.author | MANCOIS, Vincent | |
hal.structure.identifier | Laboratoire Photonique, Numérique et Nanosciences [LP2N] | |
dc.contributor.author | GERENT, Jean-Baptiste | |
hal.structure.identifier | Laboratoire Photonique, Numérique et Nanosciences [LP2N] | |
dc.contributor.author | BACLET, Guillaume | |
hal.structure.identifier | Laboratoire Photonique, Numérique et Nanosciences [LP2N] | |
dc.contributor.author | BOUYER, Philippe | |
hal.structure.identifier | Laboratoire Photonique, Numérique et Nanosciences [LP2N] | |
dc.contributor.author | BERNON, Simon | |
dc.date.accessioned | 2023-05-12T10:29:42Z | |
dc.date.available | 2023-05-12T10:29:42Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/181374 | |
dc.description.abstractEn | Absorption imaging is a commonly adopted method to acquire, with high temporal resolution, spatial information on a partially transparent object. It relies on the interference between a probe beam and the coherent response of the object. In the low saturation regime, it is well described by a Beer Lambert attenuation. In this paper we theoretically derive the absorption of a $\sigma$ polarized laser probe by an ensemble of two-level systems in any saturation regime. We experimentally demonstrate that the absorption cross section in dense $^{87}$Rb cold atom ensembles is reduced, with respect to the single particle response, by a factor proportional to the optical density b of the medium. To explain this reduction, we developed a model that incorporates, in the single particle response, the incoherent electromagnetic background emitted by the surrounding ensemble. We show that it qualitatively reproduces the experimental results. Our calibration factor that has a universal dependence on optical density $b$ for $\sigma$ polarized light : $\alpha$ = 1.17(9) + 0.255(2)b allows to obtain quantitative and absolute, in situ, images of dense quantum systems. | |
dc.description.sponsorship | Atomes Ultra-Froids piégés dans des Réseaux Optiques Nano-Structurés - ANR-18-CE47-0001 | |
dc.description.sponsorship | Initiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003 | |
dc.language.iso | en | |
dc.subject.en | density | |
dc.subject.en | optical | |
dc.subject.en | cross section | |
dc.subject.en | absorption | |
dc.subject.en | background | |
dc.subject.en | electromagnetic | |
dc.subject.en | saturation | |
dc.subject.en | imaging | |
dc.subject.en | attenuation | |
dc.subject.en | laser | |
dc.subject.en | calibration | |
dc.subject.en | experimental results | |
dc.subject.en | coherence | |
dc.subject.en | interference | |
dc.subject.en | channel cross section | |
dc.subject.en | ratio | |
dc.subject.en | atom | |
dc.subject.en | resolution | |
dc.title.en | Quantitative absorption imaging of optically dense effective two-level systems | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1103/PhysRevResearch.4.033033 | |
dc.subject.hal | Physique [physics]/Physique Quantique [quant-ph] | |
dc.subject.hal | Physique [physics] | |
dc.subject.hal | Physique [physics]/Physique [physics]/Physique Atomique [physics.atom-ph] | |
dc.subject.hal | Physique [physics]/Physique [physics]/Physique Générale [physics.gen-ph] | |
dc.identifier.arxiv | 2110.12505 | |
bordeaux.journal | Phys.Rev.Res | |
bordeaux.page | 033033 | |
bordeaux.volume | 4 | |
bordeaux.hal.laboratories | Laboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298 | * |
bordeaux.issue | 3 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03419092 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03419092v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Phys.Rev.Res&rft.date=2022&rft.volume=4&rft.issue=3&rft.spage=033033&rft.epage=033033&rft.au=VEYRON,%20Romain&MANCOIS,%20Vincent&GERENT,%20Jean-Baptiste&BACLET,%20Guillaume&BOUYER,%20Philippe&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |